33,835 research outputs found
Deep VLT infrared observations of X-ray Dim Isolated Neutron Stars
X-ray observations have unveiled the existence of a family of radio-quiet
Isolated Neutron Stars whose X-ray emission is purely thermal, hence dubbed
X-ray Dim Isolated Neutron Stars (XDINSs). While optical observations have
allowed to relate the thermal emission to the neutron star cooling and to build
the neutron star surface thermal map, IR observations are critical to pinpoint
a spectral turnover produced by a so far unseen magnetospheric component, or by
the presence of a fallback disk. The detection of such a turnover can provide
further evidence of a link between this class of isolated neutron stars and the
magnetars, which show a distinctive spectral flattening in the IR.
Here we present the deepest IR observations ever of five XDINSs, which we use
to constrain a spectral turnover in the IR and the presence of a fallback disk.
The data are obtained using the ISAAC instrument at the VLT.
For none of our targets it was possible to identify the IR counterpart down
to limiting magnitudes H = 21.5 - 22.9. Although these limits are the deepest
ever obtained for neutron stars of this class, they are not deep enough to rule
out the existence and the nature of a possible spectral flattening in the IR.
We also derive, by using disk models, the upper limits on the mass inflow rate
in a fallback disk. We find the existence of a putative fallback disk
consistent (although not confirmed) with our observations.Comment: 6 pages, 2 figures, accepted by A&A on 26-06-200
Template-based Gravitational-Wave Echoes Search Using Bayesian Model Selection
The ringdown of the gravitational-wave signal from a merger of two black
holes has been suggested as a probe of the structure of the remnant compact
object, which may be more exotic than a black hole. It has been pointed out
that there will be a train of echoes in the late-time ringdown stage for
different types of exotic compact objects. In this paper, we present a
template-based search methodology using Bayesian statistics to search for
echoes of gravitational waves. Evidence for the presence or absence of echoes
in gravitational-wave events can be established by performing Bayesian model
selection. The Occam factor in Bayesian model selection will automatically
penalize the more complicated model that echoes are present in
gravitational-wave strain data because of its higher degree of freedom to fit
the data. We find that the search methodology was able to identify
gravitational-wave echoes with Abedi et al.'s echoes waveform model about 82.3%
of the time in simulated Gaussian noise in the Advanced LIGO and Virgo network
and about 61.1% of the time in real noise in the first observing run of
Advanced LIGO with significance. Analyses using this method are
performed on the data of Advanced LIGO's first observing run, and we find no
statistical significant evidence for the detection of gravitational-wave
echoes. In particular, we find combined evidence of the three events
in Advanced LIGO's first observing run. The analysis technique developed in
this paper is independent of the waveform model used, and can be used with
different parametrized echoes waveform models to provide more realistic
evidence of the existence of echoes from exotic compact objects.Comment: 16 pages, 6 figure
Secure two-party quantum evaluation of unitaries against specious adversaries
We describe how any two-party quantum computation, specified by a unitary
which simultaneously acts on the registers of both parties, can be privately
implemented against a quantum version of classical semi-honest adversaries that
we call specious. Our construction requires two ideal functionalities to
garantee privacy: a private SWAP between registers held by the two parties and
a classical private AND-box equivalent to oblivious transfer. If the unitary to
be evaluated is in the Clifford group then only one call to SWAP is required
for privacy. On the other hand, any unitary not in the Clifford requires one
call to an AND-box per R-gate in the circuit. Since SWAP is itself in the
Clifford group, this functionality is universal for the private evaluation of
any unitary in that group. SWAP can be built from a classical bit commitment
scheme or an AND-box but an AND-box cannot be constructed from SWAP. It follows
that unitaries in the Clifford group are to some extent the easy ones. We also
show that SWAP cannot be implemented privately in the bare model
Quantum Otto cycle with inner friction: finite-time and disorder effects
The concept of inner friction, by which a quantum heat engine is unable to
follow adiabatically its strokes and thus dissipates useful energy, is
illustrated in an exact physical model where the working substance consists of
an ensemble of misaligned spins interacting with a magnetic field and
performing the Otto cycle. The effect of this static disorder under a
finite-time cycle gives a new perspective of the concept of inner friction
under realistic settings. We investigate the efficiency and power of this
engine and relate its performance to the amount of friction from misalignment
and to the temperature difference between heat baths. Finally we propose an
alternative experimental implementation of the cycle where the spin is encoded
in the degree of polarization of photons.Comment: Published version in the Focus Issue on "Quantum Thermodynamics
Similarity transformations approach for a generalized Fokker-Planck equation
By using similarity transformations approach, the exact propagator for a
generalized one-dimensional Fokker-Planck equation, with linear drift force and
space-time dependent diffusion coefficient, is obtained. The method is simple
and enables us to recover and generalize special cases studied through the Lie
algebraic approach and the Green function technique.Comment: 8 pages, no figure
Interpretation and the Constraints on International Courts
This paper argues that methodologies of interpretation do not do what they promise – they do not constrain interpretation by providing neutral steps that one can follow in finding out a meaning of a text – but nevertheless do their constraining work by being part of what can be described as the legal practice
Keep it fresh: Reducing the age of information in V2X networks
The freshness of information is of the utmost importance in many contexts, including V2X networks and applications. One measure of this metric is the Age of Information (AoI), a notion recently introduced and explored by several authors, often with specific reference to vehicular networks. With this work, we explore the possibility of reducing the AoI of multi-hop information flooding in V2X networks exploiting the properties of the Eigenvector Centrality (EvC) of nodes in the topology, and the possibility that each node computes it exploiting only local information and very easy computations, so that each node can autonomously adapt its own networking parameters to redistribute information more efficiently. Starting from theoretical bounds and results, we explore how they hold in urban-constrained topologies and compare the AoI achieved exploiting EvC with the AoI achievable without this optimization of the nodes' behavior. Simulation results show a meaningful improvement without using additional resources and without the need of any global coordination
Infective flooding in low-duty-cycle networks, properties and bounds
Flooding information is an important function in many networking applications. In some networks, as wireless sensor networks or some ad-hoc networks it is so essential as to dominate the performance of the entire system. Exploiting some recent results based on the distributed computation of the eigenvector centrality of nodes in the network graph and classical dynamic diffusion models on graphs, this paper derives a novel theoretical framework for efficient resource allocation to flood information in mesh networks with low duty-cycling without the need to build a distribution tree or any other distribution overlay. Furthermore, the method requires only local computations based on each node neighborhood. The model provides lower and upper stochastic bounds on the flooding delay averages on all possible sources with high probability. We show that the lower bound is very close to the theoretical optimum. A simulation-based implementation allows the study of specific topologies and graph models as well as scheduling heuristics and packet losses. Simulation experiments show that simple protocols based on our resource allocation strategy can easily achieve results that are very close to the theoretical minimum obtained building optimized overlays on the network
Dynamics of correlations due to a phase noisy laser
We analyze the dynamics of various kinds of correlations present between two
initially entangled independent qubits, each one subject to a local phase noisy
laser. We give explicit expressions of the relevant quantifiers of correlations
for the general case of single-qubit unital evolution, which includes the case
of a phase noisy laser. Although the light field is treated as classical, we
find that this model can describe revivals of quantum correlations. Two
different dynamical regimes of decay of correlations occur, a Markovian one
(exponential decay) and a non-Markovian one (oscillatory decay with revivals)
depending on the values of system parameters. In particular, in the
non-Markovian regime, quantum correlations quantified by quantum discord show
an oscillatory decay faster than that of classical correlations. Moreover,
there are time regions where nonzero discord is present while entanglement is
zero.Comment: 7 pages, 3 figures, accepted for publication in Phys. Scripta,
special issue for CEWQO 2011 proceeding
- …