30,304 research outputs found
Secure two-party quantum evaluation of unitaries against specious adversaries
We describe how any two-party quantum computation, specified by a unitary
which simultaneously acts on the registers of both parties, can be privately
implemented against a quantum version of classical semi-honest adversaries that
we call specious. Our construction requires two ideal functionalities to
garantee privacy: a private SWAP between registers held by the two parties and
a classical private AND-box equivalent to oblivious transfer. If the unitary to
be evaluated is in the Clifford group then only one call to SWAP is required
for privacy. On the other hand, any unitary not in the Clifford requires one
call to an AND-box per R-gate in the circuit. Since SWAP is itself in the
Clifford group, this functionality is universal for the private evaluation of
any unitary in that group. SWAP can be built from a classical bit commitment
scheme or an AND-box but an AND-box cannot be constructed from SWAP. It follows
that unitaries in the Clifford group are to some extent the easy ones. We also
show that SWAP cannot be implemented privately in the bare model
A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution
We discuss excess noise contributions of a practical balanced homodyne
detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution
(QKD). We point out the key generated from the original realistic model of GMCS
QKD may not be secure. In our refined realistic model, we take into account
excess noise due to the finite bandwidth of the homodyne detector and the
fluctuation of the local oscillator. A high speed balanced homodyne detector
suitable for GMCS QKD in the telecommunication wavelength region is built and
experimentally tested. The 3dB bandwidth of the balanced homodyne detector is
found to be 104MHz and its electronic noise level is 13dB below the shot noise
at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate
of a GMCS QKD experiment with this homodyne detector is expected to reach
Mbits/s over a few kilometers.Comment: 22 pages, 11 figure
Experimental demonstration of phase-remapping attack in a practical quantum key distribution system
Unconditional security proofs of various quantum key distribution (QKD)
protocols are built on idealized assumptions. One key assumption is: the sender
(Alice) can prepare the required quantum states without errors. However, such
an assumption may be violated in a practical QKD system. In this paper, we
experimentally demonstrate a technically feasible "intercept-and-resend" attack
that exploits such a security loophole in a commercial "plug & play" QKD
system. The resulting quantum bit error rate is 19.7%, which is below the
proven secure bound of 20.0% for the BB84 protocol. The attack we utilize is
the phase-remapping attack (C.-H. F. Fung, et al., Phys. Rev. A, 75, 32314,
2007) proposed by our group.Comment: 16 pages, 6 figure
On the communication cost of entanglement transformations
We study the amount of communication needed for two parties to transform some
given joint pure state into another one, either exactly or with some fidelity.
Specifically, we present a method to lower bound this communication cost even
when the amount of entanglement does not increase. Moreover, the bound applies
even if the initial state is supplemented with unlimited entanglement in the
form of EPR pairs, and the communication is allowed to be quantum mechanical.
We then apply the method to the determination of the communication cost of
asymptotic entanglement concentration and dilution. While concentration is
known to require no communication whatsoever, the best known protocol for
dilution, discovered by Lo and Popescu [Phys. Rev. Lett. 83(7):1459--1462,
1999], requires a number of bits to be exchanged which is of the order of the
square root of the number of EPR pairs. Here we prove a matching lower bound of
the same asymptotic order, demonstrating the optimality of the Lo-Popescu
protocol up to a constant factor and establishing the existence of a
fundamental asymmetry between the concentration and dilution tasks.
We also discuss states for which the minimal communication cost is
proportional to their entanglement, such as the states recently introduced in
the context of ``embezzling entanglement'' [W. van Dam and P. Hayden,
quant-ph/0201041].Comment: 9 pages, 1 figure. Added a reference and some further explanations.
In v3 some arguments are given in more detai
Quantum Gambling Using Three Nonorthogonal States
We provide a quantum gambling protocol using three (symmetric) nonorthogonal
states. The bias of the proposed protocol is less than that of previous ones,
making it more practical. We show that the proposed scheme is secure against
non-entanglement attacks. The security of the proposed scheme against
entanglement attacks is shown heuristically.Comment: no essential correction, 4 pages, RevTe
Similarity transformations approach for a generalized Fokker-Planck equation
By using similarity transformations approach, the exact propagator for a
generalized one-dimensional Fokker-Planck equation, with linear drift force and
space-time dependent diffusion coefficient, is obtained. The method is simple
and enables us to recover and generalize special cases studied through the Lie
algebraic approach and the Green function technique.Comment: 8 pages, no figure
Universal teleportation with a twist
We give a transfer theorem for teleportation based on twisting the
entanglement measurement. This allows one to say what local unitary operation
must be performed to complete the teleportation in any situation, generalizing
the scheme to include overcomplete measurements, non-abelian groups of local
unitary operations (e.g., angular momentum teleportation), and the effect of
non-maximally entangled resources.Comment: 4 pages, 1 figur
- …