27,571 research outputs found

    Beating the PNS attack in practical quantum cryptography

    Full text link
    In practical quantum key distribution, weak coherent state is often used and the channel transmittance can be very small therefore the protocol could be totally insecure under the photon-number-splitting attack. We propose an efficient method to verify the upper bound of the fraction of counts caused by multi-photon pluses transmitted from Alice to Bob, given whatever type of Eve's action. The protocol simply uses two coherent states for the signal pulses and vacuum for decoy pulse. Our verified upper bound is sufficiently tight for QKD with very lossy channel, in both asymptotic case and non-asymptotic case. The coherent states with mean photon number from 0.2 to 0.5 can be used in practical quantum cryptography. We show that so far our protocol is the onlyonly decoy-state protocol that really works for currently existing set-ups.Comment: So far this is the unique decoy-state protocol which really works efficiently in practice. Prior art results are commented in both main context and the Appendi

    Field-induced structure transformation in electrorheological solids

    Full text link
    We have computed the local electric field in a body-centered tetragonal (BCT) lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local field strength. For the ground state of an electrorheological solid of hard spheres, we identified a novel structure transformation from the BCT to the face-centered cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard sphere constraint. In contrast to the previous results, the local field exhibits a non-monotonic transition from BCT to FCC. As c increases from the BCT ground state, the local field initially decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a maximum value and finally decreases to the FCC value. An experimental realization of the structure transformation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.

    Unconditionally Secure Bit Commitment

    Get PDF
    We describe a new classical bit commitment protocol based on cryptographic constraints imposed by special relativity. The protocol is unconditionally secure against classical or quantum attacks. It evades the no-go results of Mayers, Lo and Chau by requiring from Alice a sequence of communications, including a post-revelation verification, each of which is guaranteed to be independent of its predecessor.Comment: Typos corrected. Reference details added. To appear in Phys. Rev. Let

    Coin Tossing is Strictly Weaker Than Bit Commitment

    Full text link
    We define cryptographic assumptions applicable to two mistrustful parties who each control two or more separate secure sites between which special relativity guarantees a time lapse in communication. We show that, under these assumptions, unconditionally secure coin tossing can be carried out by exchanges of classical information. We show also, following Mayers, Lo and Chau, that unconditionally secure bit commitment cannot be carried out by finitely many exchanges of classical or quantum information. Finally we show that, under standard cryptographic assumptions, coin tossing is strictly weaker than bit commitment. That is, no secure classical or quantum bit commitment protocol can be built from a finite number of invocations of a secure coin tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let

    Secure and efficient decoy-state quantum key distribution with inexact pulse intensities

    Full text link
    We present a general theorem for the efficient verification of the lower bound of single-photon transmittance. We show how to do decoy-state quantum key distribution efficiently with large random errors in the intensity control. In our protocol, the linear terms of fluctuation disappear and only the quadratic terms take effect. We then show the unconditional security of decoy-state method with whatever error pattern in intensities of decoy pulses and signal pulses provided that the intensity of each decoy pulse is less than μ\mu and the intensity of each signal pulse is larger than μ′\mu'

    On the communication cost of entanglement transformations

    Get PDF
    We study the amount of communication needed for two parties to transform some given joint pure state into another one, either exactly or with some fidelity. Specifically, we present a method to lower bound this communication cost even when the amount of entanglement does not increase. Moreover, the bound applies even if the initial state is supplemented with unlimited entanglement in the form of EPR pairs, and the communication is allowed to be quantum mechanical. We then apply the method to the determination of the communication cost of asymptotic entanglement concentration and dilution. While concentration is known to require no communication whatsoever, the best known protocol for dilution, discovered by Lo and Popescu [Phys. Rev. Lett. 83(7):1459--1462, 1999], requires a number of bits to be exchanged which is of the order of the square root of the number of EPR pairs. Here we prove a matching lower bound of the same asymptotic order, demonstrating the optimality of the Lo-Popescu protocol up to a constant factor and establishing the existence of a fundamental asymmetry between the concentration and dilution tasks. We also discuss states for which the minimal communication cost is proportional to their entanglement, such as the states recently introduced in the context of ``embezzling entanglement'' [W. van Dam and P. Hayden, quant-ph/0201041].Comment: 9 pages, 1 figure. Added a reference and some further explanations. In v3 some arguments are given in more detai

    Alternative schemes for measurement-device-independent quantum key distribution

    Full text link
    Practical schemes for measurement-device-independent quantum key distribution using phase and path or time encoding are presented. In addition to immunity to existing loopholes in detection systems, our setup employs simple encoding and decoding modules without relying on polarization maintenance or optical switches. Moreover, by employing a modified sifting technique to handle the dead-time limitations in single-photon detectors, our scheme can be run with only two single-photon detectors. With a phase-postselection technique, a decoy-state variant of our scheme is also proposed, whose key generation rate scales linearly with the channel transmittance.Comment: 30 pages, 5 figure

    A decoy-state protocol for quantum cryptography with 4 intensities of coherent states

    Full text link
    In order to beat any type of photon-number-splitting attack, we propose a protocol for quantum key distributoin (QKD) using 4 different intensities of pulses. They are vacuum and coherent states with mean photon number μ,μ′\mu,\mu' and μs\mu_s. μs\mu_s is around 0.55 and this class of pulses are used as the main signal states. The other two classes of coherent states (μ,μ′\mu,\mu') are also used signal states but their counting rates should be studied jointly with the vacuum. We have shown that, given the typical set-up in practice, the key rate from the main signal pulses is quite close to the theoretically allowed maximal rate in the case given the small overall transmittance of 10−410^{-4}

    Quantum circuit for security proof of quantum key distribution without encryption of error syndrome and noisy processing

    Full text link
    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.Comment: 8 pages, 2 figures. Typo correcte
    • …
    corecore