27,571 research outputs found
Beating the PNS attack in practical quantum cryptography
In practical quantum key distribution, weak coherent state is often used and
the channel transmittance can be very small therefore the protocol could be
totally insecure under the photon-number-splitting attack. We propose an
efficient method to verify the upper bound of the fraction of counts caused by
multi-photon pluses transmitted from Alice to Bob, given whatever type of Eve's
action. The protocol simply uses two coherent states for the signal pulses and
vacuum for decoy pulse. Our verified upper bound is sufficiently tight for QKD
with very lossy channel, in both asymptotic case and non-asymptotic case. The
coherent states with mean photon number from 0.2 to 0.5 can be used in
practical quantum cryptography. We show that so far our protocol is the
decoy-state protocol that really works for currently existing set-ups.Comment: So far this is the unique decoy-state protocol which really works
efficiently in practice. Prior art results are commented in both main context
and the Appendi
Field-induced structure transformation in electrorheological solids
We have computed the local electric field in a body-centered tetragonal (BCT)
lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to
examine the effects of a structure transformation on the local field strength.
For the ground state of an electrorheological solid of hard spheres, we
identified a novel structure transformation from the BCT to the face-centered
cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard
sphere constraint. In contrast to the previous results, the local field
exhibits a non-monotonic transition from BCT to FCC. As c increases from the
BCT ground state, the local field initially decreases rapidly towards the
isotropic value at the body-centered cubic lattice, decreases further, reaching
a minimum value and increases, passing through the isotropic value again at an
intermediate lattice, reaches a maximum value and finally decreases to the FCC
value. An experimental realization of the structure transformation is
suggested. Moreover, the change in the local field can lead to a generalized
Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.
Unconditionally Secure Bit Commitment
We describe a new classical bit commitment protocol based on cryptographic
constraints imposed by special relativity. The protocol is unconditionally
secure against classical or quantum attacks. It evades the no-go results of
Mayers, Lo and Chau by requiring from Alice a sequence of communications,
including a post-revelation verification, each of which is guaranteed to be
independent of its predecessor.Comment: Typos corrected. Reference details added. To appear in Phys. Rev.
Let
Coin Tossing is Strictly Weaker Than Bit Commitment
We define cryptographic assumptions applicable to two mistrustful parties who
each control two or more separate secure sites between which special relativity
guarantees a time lapse in communication. We show that, under these
assumptions, unconditionally secure coin tossing can be carried out by
exchanges of classical information. We show also, following Mayers, Lo and
Chau, that unconditionally secure bit commitment cannot be carried out by
finitely many exchanges of classical or quantum information. Finally we show
that, under standard cryptographic assumptions, coin tossing is strictly weaker
than bit commitment. That is, no secure classical or quantum bit commitment
protocol can be built from a finite number of invocations of a secure coin
tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let
Secure and efficient decoy-state quantum key distribution with inexact pulse intensities
We present a general theorem for the efficient verification of the lower
bound of single-photon transmittance. We show how to do decoy-state quantum key
distribution efficiently with large random errors in the intensity control. In
our protocol, the linear terms of fluctuation disappear and only the quadratic
terms take effect. We then show the unconditional security of decoy-state
method with whatever error pattern in intensities of decoy pulses and signal
pulses provided that the intensity of each decoy pulse is less than and
the intensity of each signal pulse is larger than
On the communication cost of entanglement transformations
We study the amount of communication needed for two parties to transform some
given joint pure state into another one, either exactly or with some fidelity.
Specifically, we present a method to lower bound this communication cost even
when the amount of entanglement does not increase. Moreover, the bound applies
even if the initial state is supplemented with unlimited entanglement in the
form of EPR pairs, and the communication is allowed to be quantum mechanical.
We then apply the method to the determination of the communication cost of
asymptotic entanglement concentration and dilution. While concentration is
known to require no communication whatsoever, the best known protocol for
dilution, discovered by Lo and Popescu [Phys. Rev. Lett. 83(7):1459--1462,
1999], requires a number of bits to be exchanged which is of the order of the
square root of the number of EPR pairs. Here we prove a matching lower bound of
the same asymptotic order, demonstrating the optimality of the Lo-Popescu
protocol up to a constant factor and establishing the existence of a
fundamental asymmetry between the concentration and dilution tasks.
We also discuss states for which the minimal communication cost is
proportional to their entanglement, such as the states recently introduced in
the context of ``embezzling entanglement'' [W. van Dam and P. Hayden,
quant-ph/0201041].Comment: 9 pages, 1 figure. Added a reference and some further explanations.
In v3 some arguments are given in more detai
Alternative schemes for measurement-device-independent quantum key distribution
Practical schemes for measurement-device-independent quantum key distribution
using phase and path or time encoding are presented. In addition to immunity to
existing loopholes in detection systems, our setup employs simple encoding and
decoding modules without relying on polarization maintenance or optical
switches. Moreover, by employing a modified sifting technique to handle the
dead-time limitations in single-photon detectors, our scheme can be run with
only two single-photon detectors. With a phase-postselection technique, a
decoy-state variant of our scheme is also proposed, whose key generation rate
scales linearly with the channel transmittance.Comment: 30 pages, 5 figure
A decoy-state protocol for quantum cryptography with 4 intensities of coherent states
In order to beat any type of photon-number-splitting attack, we propose a
protocol for quantum key distributoin (QKD) using 4 different intensities of
pulses. They are vacuum and coherent states with mean photon number
and . is around 0.55 and this class of pulses are used as the
main signal states. The other two classes of coherent states () are
also used signal states but their counting rates should be studied jointly with
the vacuum. We have shown that, given the typical set-up in practice, the key
rate from the main signal pulses is quite close to the theoretically allowed
maximal rate in the case given the small overall transmittance of
Quantum circuit for security proof of quantum key distribution without encryption of error syndrome and noisy processing
One of the simplest security proofs of quantum key distribution is based on
the so-called complementarity scenario, which involves the complementarity
control of an actual protocol and a virtual protocol [M. Koashi, e-print
arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in
classical postprocessing, i.e., the syndrome for the error-correction step has
to be encrypted. In this paper, we remove this limitation by constructing a
quantum circuit for the virtual protocol. Moreover, our circuit with a shield
system gives an intuitive proof of why adding noise to the sifted key increases
the bit error rate threshold in the general case in which one of the parties
does not possess a qubit. Thus, our circuit bridges the simple proof and the
use of wider classes of classical postprocessing.Comment: 8 pages, 2 figures. Typo correcte
- …