26,171 research outputs found
Habitat fragmentation and anthropogenic factors affect wildcat Felis silvestris silvestris occupancy and detectability on Mt Etna
Knowledge of patterns of occupancy is crucial for planning sound biological management and for identifying areas which require paramount conservation attention. The European wildcat Felis silvestris is an elusive carnivore and is classified as ‘least concern’ on the IUCN red list, but with a decreasing population trend in some areas. Sicily hosts a peculiar wildcat population, which deserves conservation and management actions, due to its isolation from the mainland. Patterns of occupancy for wildcats are unknown in Italy, and especially in Sicily. We aimed to identify which ecological drivers determined wildcat occurrence on Mt Etna and to provide conservation actions to promote the wildcats’ long-term survival in this peculiar environment. The genetic identity of the wildcat population was confirmed through a scat-collection which detected 22 different wildcat individuals. We analysed wildcat detections collected by 91 cameras using an occupancy frame work to assess which covariates influenced the detection (p) and the occupancy (ψ) estimates. We recorded 70 detections of the target species from 38 cameras within 3377 trap-days. Wildcat detection was positively influenced by the distance to the major paved roads and negatively affected by the presence of humans. Wildcat occupancy was positively associated with mixed forest and negatively influenced by pine forest, fragmentation of mixed forest and altitude. A spatially explicit predicted occupancy map, validated using an independent dataset of wildcat presence records, showed that higher occupancy estimates were scattered, mainly located on the north face and at lower altitude. Habitat fragmentation has been claimed as a significant threat for the wildcat and this is the first study that has ascertained this as a limiting factor for wildcat occurrence. Conservation actions should promote interconnectivity between areas with high predicted wildcat occupancy while minimising the loss of habitat
Experimental demonstration of phase-remapping attack in a practical quantum key distribution system
Unconditional security proofs of various quantum key distribution (QKD)
protocols are built on idealized assumptions. One key assumption is: the sender
(Alice) can prepare the required quantum states without errors. However, such
an assumption may be violated in a practical QKD system. In this paper, we
experimentally demonstrate a technically feasible "intercept-and-resend" attack
that exploits such a security loophole in a commercial "plug & play" QKD
system. The resulting quantum bit error rate is 19.7%, which is below the
proven secure bound of 20.0% for the BB84 protocol. The attack we utilize is
the phase-remapping attack (C.-H. F. Fung, et al., Phys. Rev. A, 75, 32314,
2007) proposed by our group.Comment: 16 pages, 6 figure
Implementation of two-party protocols in the noisy-storage model
The noisy-storage model allows the implementation of secure two-party
protocols under the sole assumption that no large-scale reliable quantum
storage is available to the cheating party. No quantum storage is thereby
required for the honest parties. Examples of such protocols include bit
commitment, oblivious transfer and secure identification. Here, we provide a
guideline for the practical implementation of such protocols. In particular, we
analyze security in a practical setting where the honest parties themselves are
unable to perform perfect operations and need to deal with practical problems
such as errors during transmission and detector inefficiencies. We provide
explicit security parameters for two different experimental setups using weak
coherent, and parametric down conversion sources. In addition, we analyze a
modification of the protocols based on decoy states.Comment: 41 pages, 33 figures, this is a companion paper to arXiv:0906.1030
considering practical aspects, v2: published version, title changed in
accordance with PRA guideline
Dynamic Failure in Amorphous Solids via a Cavitation Instability
The understanding of dynamic failure in amorphous materials via the
propagation of free boundaries like cracks and voids must go beyond elasticity
theory, since plasticity intervenes in a crucial and poorly understood manner
near the moving free boundary. In this Letter we focus on failure via a
cavitation instability in a radially-symmetric stressed material, set up the
free boundary dynamics taking both elasticity and visco-plasticity into
account, using the recently proposed athermal Shear Transformation Zone theory.
We demonstrate the existence (in amorphous systems) of fast cavitation modes
accompanied by extensive plastic deformations and discuss the revealed physics.Comment: 4 pages, 4 figure
Unsupervised domain adaptation for position-independent IMU based gait analysis
Inertial measurement units (IMUs) together with advanced machine learning algorithms have enabled pervasive gait analysis. However, the worn positions of IMUs can be varied due to movements, and they are difficult to standardize across different trials, causing signal variations. Such variation contributes to a bias in the underlying distribution of training and testing data, and hinder the generalization ability of a computational gait analysis model. In this paper, we propose a position-independent IMU based gait analysis framework based on unsupervised domain adaptation. It is based on transferring knowledge from the trained data positions to a novel position without labels. Our framework was validated on gait event detection and pathological gait pattern recognition tasks based on different computational models and achieved consistently high performance on both tasks
Security Analysis of an Untrusted Source for Quantum Key Distribution: Passive Approach
We present a passive approach to the security analysis of quantum key
distribution (QKD) with an untrusted source. A complete proof of its
unconditional security is also presented. This scheme has significant
advantages in real-life implementations as it does not require fast optical
switching or a quantum random number generator. The essential idea is to use a
beam splitter to split each input pulse. We show that we can characterize the
source using a cross-estimate technique without active routing of each pulse.
We have derived analytical expressions for the passive estimation scheme.
Moreover, using simulations, we have considered four real-life imperfections:
Additional loss introduced by the "plug & play" structure, inefficiency of the
intensity monitor, noise of the intensity monitor, and statistical fluctuation
introduced by finite data size. Our simulation results show that the passive
estimate of an untrusted source remains useful in practice, despite these four
imperfections. Also, we have performed preliminary experiments, confirming the
utility of our proposal in real-life applications. Our proposal makes it
possible to implement the "plug & play" QKD with the security guaranteed, while
keeping the implementation practical.Comment: 35 pages, 19 figures. Published Versio
A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution
We discuss excess noise contributions of a practical balanced homodyne
detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution
(QKD). We point out the key generated from the original realistic model of GMCS
QKD may not be secure. In our refined realistic model, we take into account
excess noise due to the finite bandwidth of the homodyne detector and the
fluctuation of the local oscillator. A high speed balanced homodyne detector
suitable for GMCS QKD in the telecommunication wavelength region is built and
experimentally tested. The 3dB bandwidth of the balanced homodyne detector is
found to be 104MHz and its electronic noise level is 13dB below the shot noise
at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate
of a GMCS QKD experiment with this homodyne detector is expected to reach
Mbits/s over a few kilometers.Comment: 22 pages, 11 figure
Self-Segregation vs. Clustering in the Evolutionary Minority Game
Complex adaptive systems have been the subject of much recent attention. It
is by now well-established that members (`agents') tend to self-segregate into
opposing groups characterized by extreme behavior. However, while different
social and biological systems manifest different payoffs, the study of such
adaptive systems has mostly been restricted to simple situations in which the
prize-to-fine ratio, , equals unity. In this Letter we explore the dynamics
of evolving populations with various different values of the ratio , and
demonstrate that extreme behavior is in fact {\it not} a generic feature of
adaptive systems. In particular, we show that ``confusion'' and
``indecisiveness'' take over in times of depression, in which case cautious
agents perform better than extreme ones.Comment: 4 pages, 4 figure
- …