7,610 research outputs found

    Evidence for Bound Entangled States with Negative Partial Transpose

    Get PDF
    We exhibit a two-parameter family of bipartite mixed states ρbc\rho_{bc}, in a ddd\otimes d Hilbert space, which are negative under partial transposition (NPT), but for which we conjecture that no maximally entangled pure states in 222\otimes 2 can be distilled by local quantum operations and classical communication (LQ+CC). Evidence for this undistillability is provided by the result that, for certain states in this family, we cannot extract entanglement from any arbitrarily large number of copies of ρbc\rho_{bc} using a projection on 222\otimes 2. These states are canonical NPT states in the sense that any bipartite mixed state in any dimension with NPT can be reduced by LQ+CC operations to an NPT state of the ρbc\rho_{bc} form. We show that the main question about the distillability of mixed states can be formulated as an open mathematical question about the properties of composed positive linear maps.Comment: Revtex, 19 pages, 2 eps figures. v2,3: very minor changes, submitted to Phys. Rev. A. v4: minor typos correcte

    Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices

    Get PDF
    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ~288 mL/min/m[superscript 2] of oxygen and ~685 mL/min/m[superscript 2] of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO[subscript 2]. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.National Institute of General Medical Sciences (U.S.) (MSTP T32GM007753

    Quantum privacy amplification and the security of quantum cryptography over noisy channels

    Get PDF
    Existing quantum cryptographic schemes are not, as they stand, operable in the presence of noise on the quantum communication channel. Although they become operable if they are supplemented by classical privacy-amplification techniques, the resulting schemes are difficult to analyse and have not been proved secure. We introduce the concept of quantum privacy amplification and a cryptographic scheme incorporating it which is provably secure over a noisy channel. The scheme uses an `entanglement purification' procedure which, because it requires only a few quantum Controlled-Not and single-qubit operations, could be implemented using technology that is currently being developed. The scheme allows an arbitrarily small bound to be placed on the information that any eavesdropper may extract from the encrypted message.Comment: 13 pages, Latex including 2 postcript files included using psfig macro

    Lorentz transmission electron microscopy and magnetic force microscopy characterization of NiFe/Al-oxide/Co films

    Get PDF
    科研費報告書収録論文(課題番号:13305001・基盤研究(A)(2) ・H13~H15/研究代表者:宮崎, 照宣/高品位微小トンネル接合へのスピン注入

    The entanglement of purification

    Get PDF
    We introduce a measure of both quantum as well as classical correlations in a quantum state, the entanglement of purification. We show that the (regularized) entanglement of purification is equal to the entanglement cost of creating a state ρ\rho asymptotically from maximally entangled states, with negligible communication. We prove that the classical mutual information and the quantum mutual information divided by two are lower bounds for the regularized entanglement of purification. We present numerical results of the entanglement of purification for Werner states in H2H2{\cal H}_2 \otimes {\cal H}_2.Comment: 12 pages RevTex, 1 figure, to appear in JMP special issue on quantum information. v3 contains additional references, motivation, and a small change in the figur

    Protecting Quantum Information Encoded in Decoherence Free States Against Exchange Errors

    Full text link
    The exchange interaction between identical qubits in a quantum information processor gives rise to unitary two-qubit errors. It is shown here that decoherence free subspaces (DFSs) for collective decoherence undergo Pauli errors under exchange, which however do not take the decoherence free states outside of the DFS. In order to protect DFSs against these errors it is sufficient to employ a recently proposed concatenated DFS-quantum error correcting code scheme [D.A. Lidar, D. Bacon and K.B. Whaley, Phys. Rev. Lett. {\bf 82}, 4556 (1999)].Comment: 7 pages, no figures. Discussion in section V.A. significantly expanded. Several small changes. Two authors adde

    Radio Astronomy

    Get PDF
    Contains reports on four research projects.National Aeronautics and Space Administration (Grant NGL 22-009-016)National Aeronautics and Space Administration (Grant NGR 22-009-421)National Science Foundation (Grant GP-20769)National Science Foundation (Grant GP-21348)California Institute of Technology Contract 952568Sloan Fund for Basic Research (M. I. T. Grant 241

    Lorentz transmission electron microscopy and magnetic force microscopy characterization of NiFe/Al-oxide/Co films

    Get PDF
    Magnetization reversal process of NiFe/Al-oxide/Co junction films was observed directly using Lorentztransmission electron microscopy (LTEM) and magnetic force microscopy(MFM).In situmagnetizing experiments performed in both LTEM and MFM were facilitated by a pair of electromagnets, which were mounted on the sample stages. A two-stage magnetization reversal process for the junction film was clearly observed in LTEM with NiFe magnetization reversed first via domain wall motion followed by Co magnetization reversal via moment rotation and domain wall motion. Reversal mechanism and domain characteristics of the NiFe and Co layers showed very distinctive features. The magnetization curve of the junction filmmeasured using alternating gradient force magnetometry showed a nonzero slope at the antiparallel magnetization configuration region, which implies that magnetization directions of the NiFe and Co layers were not exactly antiparallel due to Co moment rotation existed in that region. After the magnetization reversal of the Co was complete, MFM images revealed some magnetic contrast, which suggests that an out-of-plane magnetization component remained in the Co layer. Such magnetic contrast disappeared at higher magnetic fields when the Co moments further rotated and aligned parallel to the applied field direction

    Microwave and Millimeter Wave Techniques

    Get PDF
    Contains reports on three research projects.Joint Services Electronics Program (Contract DAAB07-71-C-0300)National Science Foundation (Grant GP-40485X

    Radio Astronomy

    Get PDF
    Contains reports on isx research projects.National Aeronautics and Space Administration, Langley Research Center (Contract NAS1-10693)National Science Foundation (Grant GP-21348)National Science Foundation (Grant GP-14589)California Institute of Technology Contract 952568Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-030
    corecore