52,256 research outputs found
Evaluation of the amperex 56 TVP photomultiplier
Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications
Low-frequency microwave radiometer for N-ROSS
The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations. The target SST accuracy is + or - 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other esstential parameters of the low frequency microwave radiometer (LFMR). It will be a dual polarized, dual frequency system at 5.2 and 10.4 GHz using a 4.9 meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988
A proposal for founding mistrustful quantum cryptography on coin tossing
A significant branch of classical cryptography deals with the problems which
arise when mistrustful parties need to generate, process or exchange
information. As Kilian showed a while ago, mistrustful classical cryptography
can be founded on a single protocol, oblivious transfer, from which general
secure multi-party computations can be built.
The scope of mistrustful quantum cryptography is limited by no-go theorems,
which rule out, inter alia, unconditionally secure quantum protocols for
oblivious transfer or general secure two-party computations. These theorems
apply even to protocols which take relativistic signalling constraints into
account. The best that can be hoped for, in general, are quantum protocols
computationally secure against quantum attack. I describe here a method for
building a classically certified bit commitment, and hence every other
mistrustful cryptographic task, from a secure coin tossing protocol. No
security proof is attempted, but I sketch reasons why these protocols might
resist quantum computational attack.Comment: Title altered in deference to Physical Review's fear of question
marks. Published version; references update
Brief Mindfulness Meditation Improves Mental State Attribution and Empathizing
Peer reviewedPublisher PD
A wall interference assessment/correction system
The Hackett method (a Wall Pressure Signature Method) was selected to be adapted for the 12 ft Wind Tunnel WIAC system. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in term for estimating wall interference at the model location. Hackett's method will have to be formulated for application to the unique geometry of the 12 ft tunnel. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free air and confined wind tunnel flow fields for each of the test articles over a range of test configurations. Specifically the pressure signature at the test section wall will be computed for the confined case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method. The performance of the WIAC method then may be evaluated by comparing the corrected parameters with those for the free air simulation
Two-measured variable method for wall interference assessment/correction
An iterative method for wall interference assessment and/or correction is presented for transonic flow conditions in wind tunnels equipped with two component velocity measurements on a single interface. The iterative method does not require modeling of the test article and tunnel wall boundary conditions. Analytical proof for the convergence and stability of the iterative method is shown in the subsonic flow regime. The numerical solutions are given for both 2-D and axisymmetrical cases at transonic speeds with the application of global Mach number correction
Noise Tolerance of the BB84 Protocol with Random Privacy Amplification
We prove that BB84 protocol with random privacy amplification is secure with
a higher key rate than Mayers' estimate with the same error rate. Consequently,
the tolerable error rate of this protocol is increased from 7.5 % to 11 %. We
also extend this method to the case of estimating error rates separately in
each basis, which enables us to securely share a longer key.Comment: 26 pages, 1 figure, version 2 fills a logical gap in the proof.
Version 3 includes an upper bound on the mutual information with finete code
length by using the decoding error probability of the code. Version 4 adds a
paragraph clarifying that no previous paper has proved that the BB84 with
random privacy amplification can tolerate the 11% error rat
Beating the PNS attack in practical quantum cryptography
In practical quantum key distribution, weak coherent state is often used and
the channel transmittance can be very small therefore the protocol could be
totally insecure under the photon-number-splitting attack. We propose an
efficient method to verify the upper bound of the fraction of counts caused by
multi-photon pluses transmitted from Alice to Bob, given whatever type of Eve's
action. The protocol simply uses two coherent states for the signal pulses and
vacuum for decoy pulse. Our verified upper bound is sufficiently tight for QKD
with very lossy channel, in both asymptotic case and non-asymptotic case. The
coherent states with mean photon number from 0.2 to 0.5 can be used in
practical quantum cryptography. We show that so far our protocol is the
decoy-state protocol that really works for currently existing set-ups.Comment: So far this is the unique decoy-state protocol which really works
efficiently in practice. Prior art results are commented in both main context
and the Appendi
- …