6,663 research outputs found

    Validating and controlling quantum enhancement against noise by the motion of a qubit

    Get PDF
    Experimental validation and control of quantum traits for an open quantum system are important for any quantum information purpose. We consider a traveling atom qubit as a quantum memory with adjustable velocity inside a leaky cavity, adopting a quantum witness as a figure of merit for quantumness assessment. We show that this model constitutes an inherent physical instance where the quantum witness does not work properly if not suitably optimized. We then supply the optimal intermediate blind measurements which make the quantum witness a faithful tester of quantum coherence. We thus find that larger velocities protect quantumness against noise, leading to a lifetime extension of hybrid qubit-photon entanglement and to higher phase estimation precision. Control of qubit motion thus reveals itself as a quantum enhancer

    Coherence and entanglement dynamics of vibrating qubits

    Full text link
    We investigate the dynamics of coherence and entanglement of vibrating qubits. Firstly, we consider a single trapped ion qubit inside a perfect cavity and successively we use it to construct a bipartite system made of two of such subsystems, taken identical and noninteracting. As a general result, we find that qubit vibration can lead to prolonging initial coherence in both single-qubit and two-qubit system. However, despite of this coherence preservation, we show that the decay of the entanglement between the two qubits is sped up by the vibrational motion of the qubits. Furthermore, we highlight how the dynamics of photon-phonon correlations between cavity mode and vibrational mode, which may serve as a further useful resource stored in the single-qubit system, is strongly affected by the initial state of the qubit. These results provide new insights about the ability of systems made of moving qubits in maintaining quantum resources compared to systems of stationary qubits.Comment: 7 pages, 5 figures. Prepared for the Virtual Special Issue (VSI) on Quantum Correlations, in the journal Optics Communications

    Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments

    Full text link
    Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocities of the qubits according to the non-Markovian features of the cavities. Our results supply a further way of preserving quantum correlations against noise with a natural implementation in cavity-QED scenarios and are straightforwardly extendable to many qubits for scalability.Comment: To be published in Laser Physics Letter

    Non-Markovianity and coherence of a moving qubit inside a leaky cavity

    Full text link
    Non-Markovian features of a system evolution, stemming from memory effects, may be utilized to transfer, storage, and revive basic quantum properties of the system states. It is well known that an atom qubit undergoes non-Markovian dynamics in high quality cavities. We here consider the qubit-cavity interaction in the case when the qubit is in motion inside a leaky cavity. We show that, owing to the inhibition of the decay rate, the coherence of the traveling qubit remains closer to its initial value as time goes by compared to that of a qubit at rest. We also demonstrate that quantum coherence is preserved more efficiently for larger qubit velocities. This is true independently of the evolution being Markovian or non-Markovian, albeit the latter condition is more effective at a given value of velocity. We however find that the degree of non-Markovianity is eventually weakened as the qubit velocity increases, despite a better coherence maintenance.Comment: 16 pages and 5 figures. Written for the upcoming special volume "40 years of the GKLS equation", to be published in the journal Open Systems and Information Dynamics. A co-author and some references adde

    Intrabodies Binding the Proline-Rich Domains of Mutant Huntingtin Increase Its Turnover and Reduce Neurotoxicity

    Get PDF
    Although expanded polyglutamine (polyQ) repeats are inherently toxic, causing at least nine neurodegenerative diseases, the protein context determines which neurons are affected. The polyQ expansion that causes Huntington's disease (HD) is in the first exon (HDx-1) of huntingtin (Htt). However, other parts of the protein, including the 17 N-terminal amino acids and two proline (polyP) repeat domains, regulate the toxicity of mutant Htt. The role of the P-rich domain that is flanked by the polyP domains has not been explored. Using highly specific intracellular antibodies (intrabodies), we tested various epitopes for their roles in HDx-1 toxicity, aggregation, localization, and turnover. Three domains in the P-rich region (PRR) of HDx-1 are defined by intrabodies: MW7 binds the two polyP domains, and Happ1 and Happ3, two new intrabodies, bind the unique, P-rich epitope located between the two polyP epitopes. We find that the PRR-binding intrabodies, as well as VL12.3, which binds the N-terminal 17 aa, decrease the toxicity and aggregation of HDx-1, but they do so by different mechanisms. The PRR-binding intrabodies have no effect on Htt localization, but they cause a significant increase in the turnover rate of mutant Htt, which VL12.3 does not change. In contrast, expression of VL12.3 increases nuclear Htt. We propose that the PRR of mutant Htt regulates its stability, and that compromising this pathogenic epitope by intrabody binding represents a novel therapeutic strategy for treating HD. We also note that intrabody binding represents a powerful tool for determining the function of protein epitopes in living cells

    Computational Model for Delamination Growth at SMA-GFRP Interface of Hybrid Composite

    Get PDF
    AbstractA cohesive model of the new interface of the CuZnAl SMA/GFRP hybrid composite is proposed and the interfacial delamination under Mode II loading conditions, between plain CuZnAl SMA sheet insert and GFRP matrix, as well as between CuZnAl SMA sheet insert having elliptical hole pattern and GFRP matrix, are studied in detail.The results of the pull-out tests with plain sheet insert are used to calculate the interfacial parameters of the hybrid composite. With these parameters, the cohesive interaction and failure mechanism for hybrid composite with plain sheet, as well as with patterned sheet insert, is modelled. The efficacy of the laser patterned SMA sheet inserts to improve the overall interfacial strength in the new laminated SMA/GFRP hybrid composite for applications, such as light weight and high damping material under dynamic loads, is validated
    • …
    corecore