16,364 research outputs found
Entanglement in a Valence-Bond-Solid State
We study entanglement in Valence-Bond-Solid state. It describes the ground
state of Affleck, Kennedy, Lieb and Tasaki quantum spin chain. The AKLT model
has a gap and open boundary conditions. We calculate an entropy of a subsystem
(continuous block of spins). It quantifies the entanglement of this block with
the rest of the ground state. We prove that the entanglement approaches a
constant value exponentially fast as the size of the subsystem increases.
Actually we proved that the density matrix of the continuous block of spins
depends only on the length of the block, but not on the total size of the chain
[distance to the ends also not essential]. We also study reduced density
matrices of two spins both in the bulk and on the boundary. We evaluated
concurrencies.Comment: 4pages, no figure
How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail
We explore the physical origin and robustness of constraints on the energy
density in relativistic species prior to and during recombination, often
expressed as constraints on an effective number of neutrino species, Neff.
Constraints from current data combination of Wilkinson Microwave Anisotropy
Probe (WMAP) and South Pole Telescope (SPT) are almost entirely due to the
impact of the neutrinos on the expansion rate, and how those changes to the
expansion rate alter the ratio of the photon diffusion scale to the sound
horizon scale at recombination. We demonstrate that very little of the
constraining power comes from the early Integrated Sachs-Wolfe (ISW) effect,
and also provide a first determination of the amplitude of the early ISW
effect. Varying the fraction of baryonic mass in Helium, Yp, also changes the
ratio of damping to sound-horizon scales. We discuss the physical effects that
prevent the resulting near-degeneracy between Neff and Yp from being a complete
one. Examining light element abundance measurements, we see no significant
evidence for evolution of Neff and the baryon-to-photon ratio from the epoch of
big bang nucleosynthesis to decoupling. Finally, we consider measurements of
the distance-redshift relation at low to intermediate redshifts and their
implications for the value of Neff.Comment: 11 pages. Replaced version extends our discussion of origin of
constraints and updates for current data, submitted to PR
Wave packet pseudomodes of twisted Toeplitz matrices
The pseudospectra of nonsymmetric Toeplitz or circulant matrices with varying coefficients are considered. Such matrices are characterized by a symbol that depends on both position (x) and wave number (k). It is shown that when a certain winding number or twist condition is satisfied, analogous to Hörmander's commutator condition for partial differential equations, \varepsilon-pseudoeigenvectors of such matrices for exponentially small values of \varepsilon exist in the form of localized wave packets. The symbol need not be smooth, just differentiable at a point (or less)
Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics
We report the operation of an optical parametric amplifier (OPA) capable of
producing gigawatt peak-power laser pulses with tunable wavelength in either
the visible or near-infrared spectrum. The OPA has two distinct operation modes
(i) generation of >350 uJ, sub 100 fs pulses, tunable between 1250 - 1550 nm;
(ii) generation of >190 uJ, sub 150 fs pulses tunable between 490 - 530 nm. We
have recorded high-order harmonic spectra over a wide range of driving
wavelengths. This flexible source of femtosecond pulses presents a useful tool
for exploring the wavelength-dependence of strong-field phenomena, in both the
multi-photon and tunnel ionization regimes.Comment: 14 pages, 9 figures, This paper was published in Proceedings of SPIE
10088, Nonlinear Frequency Generation and Conversion: Materials and Devices
XVI, doi 10.1117/12.225077
Quantum Simulations on a Quantum Computer
We present a general scheme for performing a simulation of the dynamics of
one quantum system using another. This scheme is used to experimentally
simulate the dynamics of truncated quantum harmonic and anharmonic oscillators
using nuclear magnetic resonance. We believe this to be the first explicit
physical realization of such a simulation.Comment: 4 pages, 2 figures (\documentstyle[prl,aps,epsfig,amscd]{revtex}); to
appear in Phys. Rev. Let
Computational capacity of the universe
Merely by existing, all physical systems register information. And by
evolving dynamically in time, they transform and process that information. The
laws of physics determine the amount of information that a physical system can
register (number of bits) and the number of elementary logic operations that a
system can perform (number of ops). The universe is a physical system. This
paper quantifies the amount of information that the universe can register and
the number of elementary operations that it can have performed over its
history. The universe can have performed no more than ops on
bits.Comment: 17 pages, TeX. submitted to Natur
Infant cortex responds to other humans from shortly after birth
A significant feature of the adult human brain is its ability to selectively process information about conspecifics. Much debate has centred on whether this specialization is primarily a result of phylogenetic adaptation, or whether the brain acquires expertise in processing social stimuli as a result of its being born into an intensely social environment. Here we study the haemodynamic response in cortical areas of newborns (1–5 days old) while they passively viewed dynamic human or mechanical action videos. We observed activation selective to a dynamic face stimulus over bilateral posterior temporal cortex, but no activation in response to a moving human arm. This selective activation to the social stimulus correlated with age in hours over the first few days post partum. Thus, even very limited experience of face-to-face interaction with other humans may be sufficient to elicit social stimulus activation of relevant cortical regions
Analytic Solution for the Ground State Energy of the Extensive Many-Body Problem
A closed form expression for the ground state energy density of the general
extensive many-body problem is given in terms of the Lanczos tri-diagonal form
of the Hamiltonian. Given the general expressions of the diagonal and
off-diagonal elements of the Hamiltonian Lanczos matrix, and
, asymptotic forms and can be defined in
terms of a new parameter ( is the Lanczos iteration and is
the size of the system). By application of theorems on the zeros of orthogonal
polynomials we find the ground-state energy density in the bulk limit to be
given in general by .Comment: 10 pages REVTex3.0, 3 PS figure
Quantum computation over continuous variables
This paper provides necessary and sufficient conditions for constructing a
universal quantum computer over continuous variables. As an example, it is
shown how a universal quantum computer for the amplitudes of the
electromagnetic field might be constructed using simple linear devices such as
beam-splitters and phase shifters, together with squeezers and nonlinear
devices such as Kerr-effect fibers and atoms in optical cavities. Such a device
could in principle perform `quantum floating point' computations. Problems of
noise, finite precision, and error correction are discussed.Comment: 9 pages, Te
- …