4,560 research outputs found
Quantum information transport to multiple receivers
The importance of transporting quantum information and entanglement with high
fidelity cannot be overemphasized. We present a scheme based on adiabatic
passage that allows for transportation of a qubit, operator measurements and
entanglement, using a 1-D array of quantum sites with a single sender (Alice)
and multiple receivers (Bobs). Alice need not know which Bob is the receiver,
and if several Bobs try to receive the signal, they obtain a superposition
state which can be used to realize two-qubit operator measurements for the
generation of maximally entangled states.Comment: Modified in view of referee's comments, new author added, natural
scheme for operator measurements identified, hence W state preparation
replaced with GHZ state preparation via operator measurements. 4 pages, 3
figure
Scheme for direct measurement of a general two-qubit Hamiltonian
The construction of two-qubit gates appropriate for universal quantum
computation is of enormous importance to quantum information processing.
Building such gates is dependent on accurate knowledge of the interaction
dynamics between two qubit systems. This letter will present a systematic
method for reconstructing the full two-qubit interaction Hamiltonian through
experimental measures of concurrence. This not only gives a convenient method
for constructing two qubit quantum gates, but can also be used to
experimentally determine various Hamiltonian parameters in physical systems. We
show explicitly how this method can be employed to determine the first and
second order spin-orbit corrections to the exchange coupling in quantum dots.Comment: 4 Pages, 1 Figur
Subspace confinement : how good is your qubit?
The basic operating element of standard quantum computation is the qubit, an isolated two-level system that can be accurately controlled, initialized and measured. However, the majority of proposed physical architectures for quantum computation are built from systems that contain much more complicated Hilbert space structures. Hence, defining a qubit requires the identification of an appropriate controllable two-dimensional sub-system. This prompts the obvious question of how well a qubit, thus defined, is confined to this subspace, and whether we can experimentally quantify the potential leakage into states outside the qubit subspace. We demonstrate how subspace leakage can be characterized using minimal theoretical assumptions by examining the Fourier spectrum of the oscillation experiment
Climate Change, Crop Yields, and Undernutrition: Development of a Model to Quantify the Impact of Climate Scenarios on Child Undernutrition
Background: Global climate change is anticipated to reduce future cereal yields and threaten food security, thus potentially increasing the risk of undernutrition. The causation of undernutrition is complex, and there is a need to develop models that better quantify the potential impacts of climate change on population health
On the Interpretation of Energy as the Rate of Quantum Computation
Over the last few decades, developments in the physical limits of computing
and quantum computing have increasingly taught us that it can be helpful to
think about physics itself in computational terms. For example, work over the
last decade has shown that the energy of a quantum system limits the rate at
which it can perform significant computational operations, and suggests that we
might validly interpret energy as in fact being the speed at which a physical
system is "computing," in some appropriate sense of the word. In this paper, we
explore the precise nature of this connection. Elementary results in quantum
theory show that the Hamiltonian energy of any quantum system corresponds
exactly to the angular velocity of state-vector rotation (defined in a certain
natural way) in Hilbert space, and also to the rate at which the state-vector's
components (in any basis) sweep out area in the complex plane. The total angle
traversed (or area swept out) corresponds to the action of the Hamiltonian
operator along the trajectory, and we can also consider it to be a measure of
the "amount of computational effort exerted" by the system, or effort for
short. For any specific quantum or classical computational operation, we can
(at least in principle) calculate its difficulty, defined as the minimum effort
required to perform that operation on a worst-case input state, and this in
turn determines the minimum time required for quantum systems to carry out that
operation on worst-case input states of a given energy. As examples, we
calculate the difficulty of some basic 1-bit and n-bit quantum and classical
operations in an simple unconstrained scenario.Comment: Revised to address reviewer comments. Corrects an error relating to
time-ordering, adds some additional references and discussion, shortened in a
few places. Figures now incorporated into tex
Modelling the influences of climate change-associated sea-level rise and socioeconomic development on future storm surge mortality
Climate change is expected to affect health through changes in exposure to weather disasters. Vulnerability to coastal flooding has decreased in recent decades but remains disproportionately high in low-income countries. We developed a new statistical model for estimating future storm surge-attributable mortality. The model accounts for sea-level rise and socioeconomic change, and allows for an initial increase in risk as low-income countries develop. We used observed disaster mortality data to fit the model, splitting the dataset to allow the use of a longer time-series of high intensity, high mortality but infrequent events. The model could not be validated due to a lack of data. However, model fit suggests it may make reasonable estimates of log mortality risk but that mortality estimates are unreliable. We made future projections with and without climate change (A1B) and sea-based adaptation, but given the lack of model validation we interpret the results qualitatively. In low-income countries, risk initially increases with development up to mid-century before decreasing. If implemented, sea-based adaptation reduces climate-associated mortality in some regions, but in others mortality remains high. These patterns reinforce the importance of implementing disaster risk reduction strategies now. Further, while average mortality changes discontinuously over time, vulnerability and risk are evolving conditions of everyday life shaped by socioeconomic processes. Given this, and the apparent importance of socioeconomic factors that condition risk in our projections, we suggest future models should focus on estimating risk rather than mortality. This would strengthen the knowledge base for averting future storm surge-attributable health impacts
Asymmetric quantum error correction via code conversion
In many physical systems it is expected that environmental decoherence will
exhibit an asymmetry between dephasing and relaxation that may result in qubits
experiencing discrete phase errors more frequently than discrete bit errors. In
the presence of such an error asymmetry, an appropriately asymmetric quantum
code - that is, a code that can correct more phase errors than bit errors -
will be more efficient than a traditional, symmetric quantum code. Here we
construct fault tolerant circuits to convert between an asymmetric subsystem
code and a symmetric subsystem code. We show that, for a moderate error
asymmetry, the failure rate of a logical circuit can be reduced by using a
combined symmetric asymmetric system and that doing so does not preclude
universality.Comment: 5 pages, 8 figures, presentation revised, figures and references
adde
- …