712 research outputs found

    On the use of blow up to study regularizations of singularities of piecewise smooth dynamical systems in R3\mathbb{R}^3

    Get PDF
    In this paper we use the blow up method of Dumortier and Roussarie \cite{dumortier_1991,dumortier_1993,dumortier_1996}, in the formulation due to Krupa and Szmolyan \cite{krupa_extending_2001}, to study the regularization of singularities of piecewise smooth dynamical systems \cite{filippov1988differential} in R3\mathbb R^3. Using the regularization method of Sotomayor and Teixeira \cite{Sotomayor96}, first we demonstrate the power of our approach by considering the case of a fold line. We quickly recover a main result of Bonet and Seara \cite{reves_regularization_2014} in a simple manner. Then, for the two-fold singularity, we show that the regularized system only fully retains the features of the singular canards in the piecewise smooth system in the cases when the sliding region does not include a full sector of singular canards. In particular, we show that every locally unique primary singular canard persists the regularizing perturbation. For the case of a sector of primary singular canards, we show that the regularized system contains a canard, provided a certain non-resonance condition holds. Finally, we provide numerical evidence for the existence of secondary canards near resonance.Comment: To appear in SIAM Journal of Applied Dynamical System

    Quadratic vector fields with a weak focus of third order

    Get PDF
    We study phase portraits of quadratic vector fields with a weak focus of third order at the origin. We show numerically the existence of at least 20 different global phase portraits for such vector fields coming from exactly 16 different local phase portraits available for these vector fields. Among these 20 phase portraits, 17 have no limit cycles and three have at least one limit cycle

    Symmetric periodic orbits near heteroclinic loops at infinity for a class of polynomial vector fields

    Get PDF
    For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops

    Canard Cycles and Poincar\'e Index of Non-Smooth Vector Fields on the Plane

    Full text link
    This paper is concerned with closed orbits of non-smooth vector fields on the plane. For a subclass of non-smooth vector fields we provide necessary and sufficient conditions for the existence of canard kind solutions. By means of a regularization we prove that the canard cycles are singular orbits of singular perturbation problems which are limit periodic sets of a sequence of limit cycles. Moreover, we generalize the Poincar\'e Index for non-smooth vector fields.Comment: 20 pages, 25 figure

    Infinitely many periodic orbits for the rhomboidal five-body problem

    Get PDF
    We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics

    Variational approach to a class of nonlinear oscillators with several limit cycles

    Full text link
    We study limit cycles of nonlinear oscillators described by the equation x¨+νF(x˙)+x=0\ddot x + \nu F(\dot x) + x =0. Depending on the nonlinearity this equation may exhibit different number of limit cycles. We show that limit cycles correspond to relative extrema of a certain functional. Analytical results in the limits ν>0\nu ->0 and ν>\nu -> \infty are in agreement with previously known criteria. For intermediate ν\nu numerical determination of the limit cycles can be obtained.Comment: 12 pages, 3 figure

    Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can one say what should happen?

    Full text link
    We consider a piecewise smooth system in the neighborhood of a co-dimension 2 discontinuity manifold Σ\Sigma. Within the class of Filippov solutions, if Σ\Sigma is attractive, one should expect solution trajectories to slide on Σ\Sigma. It is well known, however, that the classical Filippov convexification methodology is ambiguous on Σ\Sigma. The situation is further complicated by the possibility that, regardless of how sliding on Σ\Sigma is taking place, during sliding motion a trajectory encounters so-called generic first order exit points, where Σ\Sigma ceases to be attractive. In this work, we attempt to understand what behavior one should expect of a solution trajectory near Σ\Sigma when Σ\Sigma is attractive, what to expect when Σ\Sigma ceases to be attractive (at least, at generic exit points), and finally we also contrast and compare the behavior of some regularizations proposed in the literature. Through analysis and experiments we will confirm some known facts, and provide some important insight: (i) when Σ\Sigma is attractive, a solution trajectory indeed does remain near Σ\Sigma, viz. sliding on Σ\Sigma is an appropriate idealization (of course, in general, one cannot predict which sliding vector field should be selected); (ii) when Σ\Sigma loses attractivity (at first order exit conditions), a typical solution trajectory leaves a neighborhood of Σ\Sigma; (iii) there is no obvious way to regularize the system so that the regularized trajectory will remain near Σ\Sigma as long as Σ\Sigma is attractive, and so that it will be leaving (a neighborhood of) Σ\Sigma when Σ\Sigma looses attractivity. We reach the above conclusions by considering exclusively the given piecewise smooth system, without superimposing any assumption on what kind of dynamics near Σ\Sigma (or sliding motion on Σ\Sigma) should have been taking place.Comment: 19 figure
    corecore