8 research outputs found

    Tripodal BODIPY-tagged and functional molecular probes: synthesis, computational investigations and explorations by multiphoton fluorescence lifetime imaging microscopy

    Get PDF
    A range of novel BODIPY derivatives with a tripodal aromatic core was synthesized and characterized spectroscopically. These new fluorophores showed promising features as probes for in vitro assays in live cells and offer strategic routes for further functionalization towards hybrid nanomaterials. Incorporation of biotin tags facilitated proof-of-concept access to targeted bioconjugates as molecular probes. Computational explorations using DFT and TD-DFT calculations identified the most stable tripodal linker conformations and predicted their absorption and emission behavior. The uptake and speciation of these molecules in living prostate cancer cells was imaged by single- and two-photon excitation techniques coupled with two-photon fluorescence lifetime imaging (2P FLIM)The authors thank the ERC for funding through the Consolidator Grant O2Sense (617107), ERC PoC Tools-To-Sense (963937), and the University of Bath for the URSA-Science Strategic PhD studentship to ML. SIP also thanks the following grants for funding: STFC CDN+ Biosensing and NIR Imaging of New Biomarkers for Prostate Cancer, BBSRC (BB/W019655/1: Multi User High- Content Confocal Fluorescence Microscope); EP/K0171 60/1: ‘New manufacturable approaches to the deposition and patterning of graphene materials’; EP/L016354/1: EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies EP/ G03768X/1: Doctoral Training Centre in Sustainable Chemical Technologies. DGC thanks to the Ministerio de Ciencia, Innovaci' on y Universidades (Spain) for funding (TED2021132779B-100 and TED2021-129876B I00

    Synthesis, radiolabelling and in vitro imaging of multifunctional nanoceramics

    Get PDF
    Molecular imaging has become a powerful technique in preclinical and clinical research aiming towards the diagnosis of many diseases. In this work, we address the synthetic challenges in achieving lab‐scale, batch‐to‐batch reproducible copper‐64‐ and gallium‐68‐radiolabelled metal nanoparticles (MNPs) for cellular imaging purposes. Composite NPs incorporating magnetic iron oxide cores with luminescent quantum dots were simultaneously encapsulated within a thin silica shell, yielding water‐dispersible, biocompatible and luminescent NPs. Scalable surface modification protocols to attach the radioisotopes 64Cu (t1/2=12.7 h) and 68Ga (t1/2=68 min) in high yields are reported, and are compatible with the time frame of radiolabelling. Confocal and fluorescence lifetime imaging studies confirm the uptake of the encapsulated imaging agents and their cytoplasmic localisation in prostate cancer (PC‐3) cells. Cellular viability assays show that the biocompatibility of the system is improved when the fluorophores are encapsulated within a silica shell. The functional and biocompatible SiO2 matrix represents an ideal platform for the incorporation of 64Cu and 68Ga radioisotopes with high radiolabelling incorporation

    Quantifiable correlation of ToF‐SIMS and XPS data from polymer surfaces with controlled amino acid and peptide content

    Get PDF
    Peptide-coated surfaces are widely employed in biomaterial design, but quantifiable correlation between surface composition and biological response is challenging due to, for example, instrumental limitations, a lack of suitable model surfaces or limitations in quantitatively correlating data from different surface analytical techniques. Here, we first establish a reference material that allows control over amino acid content. Reversible addition-fragmentation chain-transfer (RAFT) polymerisation is used to prepare a copolymer containing alkyne and furan units with well-defined chain length and composition. Huisgen Cu(I)-catalysed azide-alkyne cycloaddition reaction is used to attach the model azido-polyethyleneglycol-amide-modified pentafluoro-l-phenylalanine to the polymer. Different compositional ratios of the polymer provide a surface with varying amino acid content that is analysed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Nitrogen-related signals are compared with fluorine signals from both techniques. Fluorine and nitrogen signals from both techniques are found to be related to the copolymer compositions, but the homopolymer data deviate from this trend. The approach is then translated to a heparin-binding peptide that supports cell adhesion. Human embryonic stem cells cultured on copolymer surfaces presenting different amounts of heparin-binding peptide show strong cell growth while maintaining pluripotency after 72 h of culture. The early cell adhesion at 24 h can be correlated to the logarithm of the normalised CH4N+ ion intensity from ToF-SIMS data, which is established as a suitable and generalisable marker ion for amino acids and peptides. This work contributes to the ability to use ToF-SIMS in a more quantitative manner for the analysis of amino acid and peptide surfaces

    Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors

    Full text link
    Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decadeWe acknowledge funding from ERC Consolidator Grant O2Sense (617107), ERC PoC Tools-To-Sense (963937), STFC CDN+, EPSRC for funding through the CDT and CSCT (EO/L016354/1), BB/W019655/1 Multi-User High Content Confocal Fluorescence Microscop

    Surface-controlled spatially heterogeneous physical properties of a supramolecular gel with homogeneous chemical composition.

    Get PDF
    Controlling supramolecular self-assembly across multiple length scales to prepare gels with localised properties is challenging. Most strategies concentrate on fabricating gels with heterogeneous components, where localised properties are generated by the stimuli-responsive component. Here, as an alternative approach, we use a spiropyran-modified surface that can be patterned with light. We show that light-induced differences in surface chemistry can direct the bulk assembly of a low molecular weight gelator, 2-NapAV, meaning that mechanical gel properties can be controlled by the surface on which the gel is grown. Using grazing incidence X-ray diffraction and grazing incidence small angle X-ray scattering, we demonstrate that the origin of the different gel properties relates to differences in the architectures of the gels. This provides a new method to prepare a single domain (i.e., chemically homogeneous) hydrogel with locally controlled (i.e., mechanically heterogeneous) properties

    Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics

    Full text link
    [EN] Molecular imaging has become a powerful technique in preclinical and clinical research aiming towards the diagnosis of many diseases. In this work, we address the synthetic challenges in achieving lab-scale, batch-to-batch reproducible copper-64- and gallium-68-radiolabelled metal nanoparticles (MNPs) for cellular imaging purposes. Composite NPs incorporating magnetic iron oxide cores with luminescent quantum dots were simultaneously encapsulated within a thin silica shell, yielding water-dispersible, biocompatible and luminescent NPs. Scalable surface modification protocols to attach the radioisotopes Cu (t=12.7 h) and Ga (t=68 min) in high yields are reported, and are compatible with the time frame of radiolabelling. Confocal and fluorescence lifetime imaging studies confirm the uptake of the encapsulated imaging agents and their cytoplasmic localisation in prostate cancer (PC-3) cells. Cellular viability assays show that the biocompatibility of the system is improved when the fluorophores are encapsulated within a silica shell. The functional and biocompatible SiO matrix represents an ideal platform for the incorporation of Cu and Ga radioisotopes with high radiolabelling incorporation.The authors are grateful for the helpful contributions, discussions and training received from the following: Professors Jason Lewis, Stephen Faulkner, and Philip Blower (MSKCC New York, Oxford and London KCL, respectively) and Drs H. Betts and P. Waghorn (Oxford and Harvard, respectively). The authors would like to thank Drs Paul Burke and Patrick Riss (Wolfson Brain Imaging Centre, Addenbrooke’s Hospital, Cambridge) for provision of 64Cu and training in this facility. Dr. Adrian T. Rogers (Microscopy and Analysis Suite), Prof. Rex M. Tyrrell (Department of Pharmacy & Pharmacology at the University of Bath), Rebecca Diment (Bath), Dan Lee (Oxford), Drs Justin P. O’Byrne and Stephen E. Flower are thanked for their invaluable contribution to preliminary aspects of this work. We thank Dr Michael W. Jones (Oxford) for assistance with the acquisition of some of the fluorescence microscopy images, Professor Quentin Pankhurst (UCL) for assistance with magnetic measurements and Dr N. Rees (Oxford) for paramagnetic NMR work. Dr Petra Cameron is thanked for assistance with early-stage tests on a proof-of-principle quantum dot encapsulation. The authors thank the Royal Society, TSB, EPSRC and MRC for funding, also the EPSRC Mass Spectrometry service (Swansea). The team was also funded by the European Commission FP7 Programme through the Marie Curie Initial Training Network PROSENSE (grant no. 317420, 2012–2016) and SIP also thanks the European Commission for an ERC Consolidator Grant (O2SENSE Program 617107, 2014–2019)
    corecore