398 research outputs found
Decreased CX3CL1 Levels in the Cerebrospinal Fluid of Patients With Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the presence of neurofibrillary tangles, constituted by tau protein, and plaques formed by amyloid-beta protein. The disease courses with high neural damage, which leads to memory loss and death. Here we analyzed the presence of CX3CL1, a chemokine expressed by neurons, in cerebrospinal fluid (CSF) samples from control subjects and patients with mild cognitive impairment and AD dementia. CX3CL1 was decreased in the CSF of AD dementia patients compared to control subjects. However, there was not difference in plasma samples from the same subjects
Cerebrospinal fluid Presenilin-1 increases at asymptomatic stage in genetically determined Alzheimer’s disease
[Background] Presenilin-1 (PS1), the active component of the intramembrane γ-secretase complex, can be detected as soluble heteromeric aggregates in cerebrospinal fluid (CSF). The aim of this study was to examine the different soluble PS1 complexes in the lumbar CSF (CSF-PS1) of individuals with Alzheimer’s disease (AD), particularly in both symptomatic and asymptomatic genetically determined AD, in order to evaluate their potential as early biomarkers.[Methods] Western blotting, differential centrifugation and co-immunoprecipitation served to determine and characterize CSF-PS1 complexes. We also monitored the assembly of soluble PS1 into complexes in a cell model, and the participation of Aβ in the dynamics and robustness of the stable PS1 complexes.[Results] There was an age-dependent increase in CSF-PS1 levels in cognitively normal controls, the different complexes represented in similar proportions. The total levels of CSF-PS1, and in particular the proportion of the stable 100–150 kDa complexes, increased in subjects with autosomal dominant AD that carried PSEN1 mutations (eight symptomatic and six asymptomatic ADAD) and in Down syndrome individuals (ten demented and ten non-demented DS), compared with age-matched controls (n = 23), even prior to the appearance of symptoms of dementia. The proportion of stable CSF-PS1 complexes also increased in sporadic AD (n = 13) and mild-cognitive impaired subjects (n = 12), relative to age-matched controls (n = 17). Co-immunoprecipitation demonstrated the association of Aβ oligomers with soluble PS1 complexes, particularly the stable complexes.[Conclusions] Our data suggest that CSF-PS1 complexes may be useful as an early biomarker for AD, reflecting the pathology at asymptomatic state.This study was funded in part by the EU BIOMARKAPD-Joint Programming on Neurodegenerative Diseases (JPND) project, by the Instituto de Salud Carlos III (ISCIII grants PI11/03026 to JSV, PI11/02425 and PI14/01126 to JF, PI11/03035 and PI14/1561 to AL, PI08/0036 and PI12/00013 to RSV, and PI11/03023 to JLM), co-financed by the Fondo Europeo de Desarrollo Regional, under the aegis of JPND, and through CIBERNED, ISCIII. This work was also supported by the Fundació Catalana de Síndrome de Down and by a “Marató TV3” grant (20141210 to JF) and a grant from the Griffols Foundation. The funding bodies played no role in the study design, data collection and analysis, the decision to publish, or the preparation of the manuscript. We also acknowledge the support for the publication fee to the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe
Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer’s disease
Background: New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. Methods: Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55). Results: In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. Conclusions: These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD
Annexin A5 prevents amyloid-β-induced toxicity in choroid plexus: implication for Alzheimer’s disease
In Alzheimer's disease (AD) amyloid-beta (A beta) deposits may cause impairments in choroid plexus, a specialised brain structure which forms the blood-cerebrospinal fluid (CSF) barrier. We previously carried out a mass proteomic-based study in choroid plexus from AD patients and we found several differentially regulated proteins compared with healthy subjects. One of these proteins, annexin A5, was previously demonstrated implicated in blocking A beta -induced cytotoxicity in neuronal cell cultures. Here, we investigated the effects of annexin A5 on A beta toxicity in choroid plexus. We used choroid plexus tissue samples and CSF from mild cognitive impairment (MCI) and AD patients to analyse A beta accumulation, cell death and annexin A5 levels compared with control subjects. Choroid plexus cell cultures from rats were used to analyse annexin A5 effects on A beta -induced cytotoxicity. AD choroid plexus exhibited progressive reduction of annexin A5 levels along with progressive increased A beta accumulation and cell death as disease stage was higher. On the other hand, annexin A5 levels in CSF from patients were found progressively increased as the disease stage increased in severity. In choroid plexus primary cultures, A beta administration reduced endogenous annexin A5 levels in a time-course dependent manner and simultaneously increased annexin A5 levels in extracellular medium. Annexin A5 addition to choroid plexus cell cultures restored the A beta -induced impairments on autophagy flux and apoptosis in a calcium-dependent manner. We propose that annexin A5 would exert a protective role in choroid plexus and this protection is lost as A beta accumulates with the disease progression. Then, brain protection against further toxic insults would be jeopardised
Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer's disease
Altres ajuts: This work was supported by grants from , Fundació La Marató TV3 (TV3-2014-3610), CIBERNED (CB06/05/0042 and PI2017/01) to JRA. DSW was supported by the Fundació La Marató TV3. JCS is a recipient of a Ph.D. Fellowship from the Ministerio de Ciencia, Innovación y Universidades. CF is a recipient of a Ph.D. Fellowship from the Department of Biochemistry and Molecular Biology of the Universitat Autònoma de Barcelona.Several evidences suggest that failure of synaptic function occurs at preclinical stages of Alzheimer's disease (AD) preceding neuronal loss and the classical AD pathological hallmarks. Nowadays, there is an urgent need to identify reliable biomarkers that could be obtained with non-invasive methods to improve AD diagnosis at early stages. Here, we have examined plasma levels of a group of miRNAs related to synaptic proteins in a cohort composed of cognitive healthy controls (HC), mild cognitive impairment (MCI) and AD subjects. Plasma and brain levels of miRNAs were analysed in two different cohorts including 38 HC, 26 MCI, 56 AD dementia patients and 27 frontotemporal dementia (FTD) patients. D'Agostino and Pearson and Shapiro-Wilk tests were used to evaluate data normality. miRNA levels between groups were compared using a two-sided nonparametric Mann-Whitney test and sensitivity and specificity was determined by receiver operating characteristic curve analysis. Significant upregulation of miR-92a-3p, miR-181c-5p and miR-210-3p was found in the plasma of both MCI and AD subjects. MCI patients that progress to AD showed higher plasma levels of these miRNAs. By contrast, no changes in miR-92a-3p, miR-181c-5p or miR-210-3p levels were observed in plasma obtained from a cohort of FTD. Our study shows that plasma miR-92a-3p, miR-181c-5p and miR-210-3p constitute a specific molecular signature potentially useful as a potential biomarker for AD. The online version of this article (10.1186/s13195-019-0501-4) contains supplementary material, which is available to authorized users
Nerve growth factor (NGF) pathway biomarkers in Down syndrome prior to and after the onset of clinical Alzheimer's disease : A paired CSF and plasma study
Altres ajuts: This work was also supported by the National Institutes of Health (R21AG056974 and R01AG061566 to JF); Departament de Salut de la Generalitat de Catalunya, Pla Estratègic de Recerca i Innovació en Salut (SLT002/16/00408 to AL); Fundació La Marató de TV3 (20141210 to JF, 044412 to RB). Fundació Catalana Síndrome de Down and Fundació Víctor Grífols i Lucas partially supported this work. This work was also supported by Generalitat de Catalunya (SLT006/17/00119 to JF) and a grant from the Fundació Bancaria La Caixa to RB.The discovery that nerve growth factor (NGF) metabolism is altered in Down syndrome (DS) and Alzheimer's disease (AD) brains offered a framework for the identification of novel biomarkers signalling NGF deregulation in AD pathology. We examined levels of NGF pathway proteins (proNGF, neuroserpin, tissue plasminogen activator [tPA], and metalloproteases [MMP]) in matched cerebrospinal fluid (CSF)/plasma samples from AD-symptomatic (DSAD) and AD-asymptomatic (aDS) individuals with DS, as well as controls (HC). ProNGF and MMP-3 were elevated while tPA was decreased in plasma from individuals with DS. CSF from individuals with DS showed elevated proNGF, neuroserpin, MMP-3, and MMP-9. ProNGF and MMP-9 in CSF differentiated DSAD from aDS (area under the curve = 0.86, 0.87). NGF pathway markers associated with CSF amyloid beta and tau and differed by sex. Brain NGF metabolism changes can be monitored in plasma and CSF, supporting relevance in AD pathology. These markers could assist staging, subtyping, or precision medicine for AD in DS
Increased plasma neurofilament light chain levels in patients with type-1 diabetes with impaired awareness of hypoglycemia
Altres ajuts: This work was financially supported by a grant from the SPANISH DIABETES SOCIETY.Impaired awareness of hypoglycemia (IAH) is a common complication in patients with type-1 diabetes (T1D). IAH is a major risk factor for severe hypoglycemic events, leading to adverse clinical consequences and cerebral damage. Non-invasive, cost-effective, and logistically efficient biomarkers for this condition have not been validated. Here, we propose plasma neurofilament light chain (NfL) levels as a biomarker of neuroaxonal damage in patients with T1D-IAH. 54 patients were included into the study (18 T1D-IAH, 18 T1D with normal awareness of hypoglycemia (NAH) and 18 healthy controls). We measured plasma NfL levels and studied cerebral gray matter alterations on MRI. We found that NfL levels were increased in patients with T1D-IAH compared with patients with T1D-NAH and healthy controls. Importantly, increased NfL levels correlated with reduced cerebral gray matter volume and increased IAH severity in patients with T1D-IAH. Overall, our findings identify plasma NfL levels as a potential biomarker of cerebral damage in this population, motivating further confirmatory studies with potential implications in clinical trials
Tau Enhances α-Synuclein Aggregation and Toxicity in Cellular Models of Synucleinopathy
BACKGROUND: The simultaneous accumulation of different misfolded proteins in the central nervous system is a common feature in many neurodegenerative diseases. In most cases, co-occurrence of abnormal deposited proteins is observed in different brain regions and cell populations, but, in some instances, the proteins can be found in the same cellular aggregates. Co-occurrence of tau and α-synuclein (α-syn) aggregates has been described in neurodegenerative disorders with primary deposition of α-syn, such as Parkinson's disease and dementia with Lewy bodies. Although it is known that tau and α-syn have pathological synergistic effects on their mutual fibrillization, the underlying biological effects remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: We used different cell models of synucleinopathy to investigate the effects of tau on α-syn aggregation. Using confocal microscopy and FRET-based techniques we observed that tau colocalized and interacted with α-syn aggregates. We also found that tau overexpression changed the pattern of α-syn aggregation, reducing the size and increasing the number of aggregates. This shift was accompanied by an increase in the levels of insoluble α-syn. Furthermore, co-transfection of tau increased secreted α-syn and cytotoxicity. CONCLUSIONS/SIGNIFICANCE: Our data suggest that tau enhances α-syn aggregation and toxicity and disrupts α-syn inclusion formation. This pathological synergistic effect between tau and α-syn may amplify the deleterious process and spread the damage in neurodegenerative diseases that show co-occurrence of both pathologies
Blood amyloid and tau biomarkers as predictors of cerebrospinal fluid profiles
Blood biomarkers represent a major advance for improving the management, diagnosis, and monitoring of Alzheimer's disease (AD). However, their context of use in relation to routine cerebrospinal fluid (CSF) analysis for the quantification of amyloid peptides and tau proteins remains to be determined. We studied in two independent cohorts, the performance of blood biomarkers in detecting "nonpathological" (A−/T−/N−), amyloid (A+) or neurodegenerative (T+ /N+) CSF profiles. Plasma Aβ/Aβ ratio and phosphorylated tau (p-tau(181)) were independent and complementary predictors of the different CSF profile and in particular of the nonpathological (A−/T−/N−) profile with a sensitivity and specificity close to 85%. These performances and the corresponding biomarker thresholds were significantly different from those related to AD detection. The use of blood biomarkers to identify patients who may benefit from secondary CSF testing represents an attractive stratification strategy in the clinical management of patients visiting memory clinics. This could reduce the need for lumbar puncture and foreshadow the use of blood testing on larger populations. The online version contains supplementary material available at 10.1007/s00702-022-02474-9
- …