7 research outputs found

    Carbon nanotube composites for thermal management

    Get PDF
    Single-wall carbon nanotubes (SWNTs) were used to augment the thermal transport properties of industrial epoxy. Samples loaded with 1 wt% unpurified SWNT material show a 70% increase in thermal conductivity at 40K, rising to 125% at room temperature; the enhancement due to 1 wt% loading of vapor grown carbon fibers is three times smaller. Electrical conductivity data show a percolation threshold between 0.1 and 0.2 wt% SWNT loading. The Vickers hardness rises monotonically with SWNT loading up to a factor of 3.5 at 2 wt%. These results suggest that the thermal and mechanical properties of SWNT-epoxy composites are improved, without the need to chemically functionalize the nanotubes

    Electrical and thermal properties of C\u3csub\u3e60\u3c/sub\u3e-filled single-wall carbon nanotubes

    Get PDF
    We report measurements of electrical resistivity, thermopower, and thermal conductivity of highly C60-filled single-wall carbon nanotubes and unfilled controls, from 1.5 to 300 K. The data suggest that the C60 chains provide additional conductive paths for charge carriers, increase the rate of phonon scattering, and block interior sites from sorbing other gas molecules

    Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties

    Get PDF
    Thick films of single wall carbon nanotubes (SWNT) exhibiting in-plane preferred orientation have been produced by filter deposition from suspension in strong magnetic fields. We characterize the field-induced alignment with x-ray fiber diagrams and polarized Raman scattering, using a model which includes a completely unaligned fraction. We correlate the texture parameters with resistivity and thermal conductivity measured parallel and perpendicular to the alignment direction. Results obtained with 7 and 26 Tesla fields are compared. We find no significant field dependence of the distribution width, while the aligned fraction is slightly greater at the higher field. Anisotropy in both transport properties is modest, with ratios in the range 5–9, consistent with the measured texture parameters assuming a simple model of rigid rod conductors. We suggest that further enhancements in anisotropic properties will require optimizing the filter deposition process rather than larger magnetic fields. We show that both x-ray and Raman data are required for a complete texture analysis of oriented SWNT materials

    Thermoelectric Power of p-Doped Single-Wall Carbon Nanotubes and the Role of Phonon Drag

    Get PDF
    We measured thermoelectric power S of bulk single-wall carbon nanotube (SWNT) materials p-doped with acids. In contrast to oxygen-exposed or degassed samples, S is very small at the lowest temperatures, increases super-linearly above a characteristic and sample-dependent T, and then levels off. We attribute this unusual behavior to 1-D phonon drag, in which the depression of the Fermi energy cuts off electron-phonon scattering at temperatures below a characteristic T0. This idea is supported by a model calculation in which the low temperature behavior of phonon drag is specifically related to the one-dimensional character of the electronic spectrum

    AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma

    Get PDF
    A causative understanding of genetic factors that regulate glioblastoma pathogenesis is of central importance. Here we developed an adeno-associated virus-mediated, autochthonous genetic CRISPR screen in glioblastoma. Stereotaxic delivery of a virus library targeting genes commonly mutated in human cancers into the brains of conditional-Cas9 mice resulted in tumors that recapitulate human glioblastoma. Capture sequencing revealed diverse mutational profiles across tumors. The mutation frequencies in mice correlated with those in two independent patient cohorts. Co-mutation analysis identified co-occurring driver combinations such as B2m-Nf1, Mll3-Nf1 and Zc3h13-Rb1, which were subsequently validated using AAV minipools. Distinct from Nf1-mutant tumors, Rb1-mutant tumors are undifferentiated and aberrantly express homeobox gene clusters. The addition of Zc3h13 or Pten mutations altered the gene expression profiles of Rb1 mutants, rendering them more resistant to temozolomide. Our study provides a functional landscape of gliomagenesis suppressors in vivo
    corecore