1,532 research outputs found
Comparison of machine learning methods for crack localization
In this paper, the Haar wavelet discrete transform, the artificial neural networks (ANNs), and the random forests (RFs) are applied to predict the location and severity of a crack in an Euler–Bernoulli cantilever subjected to the transverse free vibration. An extensive investigation into two data collection sets and machine learning methods showed that the depth of a crack is more difficult to predict than its location. The data set of eight natural frequency parameters produces more accurate predictions on the crack depth; meanwhile, the data set of eight Haar wavelet coefficients produces more precise predictions on the crack location. Furthermore, the analysis of the results showed that the ensemble of 50 ANN trained by Bayesian regularization and Levenberg–Marquardt algorithms slightly outperforms RF
Haari lainikute meetod omavõnkumiste analüüsiks ja parameetrite määramiseks
Tala on konstruktsioonielement, mille ülesandeks on vastu pidada erinevatele koormustele. Projekteerimisel alahinnatud koormused, ebatäpsused tootmisel, söövitav keskkond, konstruktsiooni vananemine ekspluatatsiooni käigus võivad talasid kahjustada ning põhjustada kogu konstruktsiooni purunemist. Seetõttu talade dünaamilise käitumise modelleerimine ja ekspluatatsiooni jälgimine on jätkuvalt aktuaalne teema konstruktsioonide mehaanikas.
Käesolev väitekiri on suunatud süstemaatilisele lähenemisele võnkumiste analüüsimiseks ja purunemise parameetrite määramiseks Euler-Bernoulli tüüpi talades. Töös pakutakse välja Haari lainikute meetod sageduste arvutamiseks ja andmete töötlemiseks. Nimelt, väitekirja esimeses osas on Haari lainikuid ja nende integreerimist rakendatud vabavõnkumise ülesannete korral, kus lahendatavaks võrrandiks on muutuvate kordajatega diferentsiaalvõrrand, millel puudub analüütiline lahend (näiteks ebaühtlase ristlõikega tala, materjali funktsionaalse gradientjaotusega tala). Arvutused kinnitasid, et pakutud lähenemisviis on kiire ja täpne vabavõnkumiste sageduste arvutamisel. Väitekirja teine osa käsitleb vabavõnkumisega seotud pöördülesandeid: pragude, delaminatsioonide, elastsete tugede jäikuse, massipunktide parameetrite määramist modaalsete omaduste kaudu. Kuna purunemise asukoha ja ulatuse arvutamine võnkumise diferentsiaalvõrrandist ei ole analüütiliselt võimalik, kasutatakse antud töös tehisnärvivõrke ja juhumetsi. Andmekogumite genereerimiseks lahendati võnkumise võrrand ning tulemusi töödeldi Haari lainikute abil. Arvutused näitasid, et Haari lainikute abil genereeritud andmekogumite arvutamiseks kuluv aeg oli üle kümne korra väiksem kui vabavõnkumiste sagedustele põhinevate andmekogumite arvutusaeg; Haari lainikute abil genereeritud andmekogumid ennustasid paremini purunemise asukohta, samas vabavõnkumiste sagedused olid tundlikumad purunemise ulatuse suhtes; enamikel juhtudel andsid tehisnärvivõrgud sama täpseid ennustusi kui juhumetsad.
Töös pakutud meetodeid ja mudeleid saab kasutada teistes teoreetilistes ülesannetes vabavõnkumiste ja purunemiste uurimiseks või rakendada talade purunemise diagnostikas.A beam is a common structural element designed to resist loading. Underestimated loads during the design stage, looseness during the manufacturing stage, corrosive environment, collisions, fatigue may introduce some damage to beams. If no action is taken, the damage can turn into a fault or a breakdown of the whole system. Hereof, the entirety of beams is a crucial issue.
This dissertation proposes a systematic approach to vibration analysis and damage quantification in the Euler-Bernoulli type beams. The solution is sought on the modal properties such as natural frequencies and mode shapes. The forward problem of the vibration analysis is solved using the Haar wavelets and their integration since the corresponding differential equations do not have an analytical solution. Multiple numerical examples indicate that the proposed approach is fast and accurate.
Damage quantification (location and severity) of a crack, a delamination, a point mass or changes in the stiffness coefficients of elastic supports on the bases of the modal properties is an inverse problem. Since it is not analytically possible to calculate the damage parameters from the vibration differential equation, the task is solved with the aid of artificial neural networks or random forests. The datasets are generated solving the vibration equations and decomposing the mode shapes into the Haar wavelet coefficients. Multiple numerical examples indicate that the Haar wavelet based dataset is calculated more than ten times faster than the frequency based dataset; the Haar wavelets are more sensitive to the damage location, while the frequencies are more sensitive to the damage severity; in most cases, the neural networks produce as precise predictions as the random forests.
The results presented in this dissertation can help in understanding the behaviour of more complex structures under similar conditions, provide apparent influence on the design concepts of structures as well as enable new possibilities for operational and maintenance concepts.https://www.ester.ee/record=b539883
Multiple intelligences activities in CLIL lessons of mathematics in English at upper secondary school : students' involvement and learning outcomes
http://www.ester.ee/record=b4581568*es
Koolielus tekkivate emotsioonide tugevus ja valents. Strength and valence of school emotions
The aim of this study is to investigate how students estimate their emotions in different contexts, to assess these emotions` valence (negativity or positivity) and their strength. Also were studied students sex, age differences and differences in teachers` and students` opinion about students` emotions. In this study participated 107 students (66 women and 41 men with mean age 14.942.0 years) and 44 teachers (34 women and 10 men with mean age 45.1612.18 years) from different schools of Ida-Viru Country. Estimates were gotten by two different questionnaires, the one for students and the second for teachers. Results show that in common girls` estimations are more extreme and stronger than boys give. Younger teenagers` emotions are more drastic and with the stronger intensity. Teachers valuate the students’ emotions very well in the valence direction with the exception that they overestimate the emotions` intensity and the value of the valence. The results showed also, that teachers also do not estimate adequately the worsening of students’ mood after the school day. The work confirms the need to use in addition to self-esteem also the other estimations.http://www.ester.ee/record=b4427105~S1*es
Stiffness parameter prediction for elastic supports of non-uniform rods
The present research focuses on establishing the stiffness parameter of elastic springs placed at the ends of non-uniform rods. The governing equation for the longitudinal vibrations of the rod was solved using the Haar wavelet integration method. The calculated natural frequency parameters closely aligned with those available in the literature. The normalised values of the first ten natural frequency parameters were used in the feature vector to predict the stiffness parameter of the springs. A feedforward neural network with two hidden layers made accurate predictions when the range of each natural frequency parameterwithin its domain exceeded one. The insights garnered from this study contribute to the design, optimisation and assessment of diverse engineering applications
The language immersion in Estonia: a copy of the Canadian model or one of its own kind?
http://tartu.ester.ee/record=b2654517~S1*es
Vastutuskindlustus Eesti Arstide Liidu liikmetele
Eesti Arstide Liit ja ERGO Kindlustuse AS on sõlminud tsiviilvastutuskindlustuse lepingu
(kindlustuspoliis nr 407963)
Dmitrij Šostakovic (1906-1975) : Teil 1: die Jahre 1929-1940
Insgesamt für 34 Filme (wenige davon mit Fortsetzungen) schrieb Dmitrij Sostakovic begleitende Filmmusik. Er galt als guter Improvisator am Klavier, was ihm zu einer Arbeit im Kinotheater der Stummfilmzeit verhalf, die er benötigte, um seine Familie zu unterstützen und sein Studium am Petrograder Konservatorium zu finanzieren, wo er Klavier, Komposition und Kontrapunkt studierte
- …