40 research outputs found

    Electron impact polarization expected in solar EUV lines from flaring chromospheres/transition regions

    Get PDF
    We have evaluated lower bounds on the degree of impact Extreme Ultraviolet/Ultraviolet (EUV/UV) line polarization expected during solar flares. This polarization arises from collisional excitation by energetic electrons with non-Maxwellian velocity distributions. Linear polarization was observed in the S I 1437 A line by the Ultraviolet Spectrometer and Polarimeter/Solar Maximum Mission (UVSP/SMM) during a flare on 15 July 1980. An early interpretation suggested that impact excitation by electrons propagating through the steep temperature gradient of the flaring transition region/high chromosphere produced this polarization. Our calculations show that the observed polarization in this UV line cannot be due to this effect. We find instead that, in some flare models, the energetic electrons can produce an impact polarization of a few percent in EUV neutral helium lines (i.e., lambda lambda 522, 537, and 584 A)

    Effects of Spatial Gradients on Electron Runaway Acceleration

    Get PDF
    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption

    Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation II: non-Maxwellian electron distributions

    Full text link
    In solar EUV spectra the He I and He II resonance lines show unusual behaviour and have anomalously high intensities compared with other transition region lines. The formation of the helium resonance lines is investigated through extensive non-LTE radiative transfer calculations. The model atmospheres of Vernazza, Avrett & Loeser are found to provide reasonable matches to the helium resonance line intensities but significantly over-estimate the intensities of other transition region lines. New model atmospheres have been developed from emission measure distributions derived by Macpherson & Jordan, which are consistent with SOHO observations of transition region lines other than those of helium. These models fail to reproduce the observed helium resonance line intensities by significant factors. The possibility that non-Maxwellian electron distributions in the transition region might lead to increased collisional excitation rates in the helium lines is studied. Collisional excitation and ionization rates are re-computed for distribution functions with power law suprathermal tails which may form by the transport of fast electrons from high temperature regions. Enhancements of the helium resonance line intensities are found, but many of the predictions of the models regarding line ratios are inconsistent with observations. These results suggest that any such departures from Maxwellian electron distributions are not responsible for the helium resonance line intensities.Comment: 23 pages, 11 figures, accepted to appear in MNRAS, LaTeX uses mn.st

    Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation I: non-thermal transport of helium ions

    Get PDF
    Models of the solar transition region made from lines other than those of helium cannot account for the strength of the helium lines. However, the collisional excitation rates of the helium resonance lines are unusually sensitive to the energy of the exciting electrons. Non-thermal motions in the transition region could drive slowly-ionizing helium ions rapidly through the steep temperature gradient, exposing them to excitation by electrons characteristic of higher temperatures than those describing their ionization state. We present the results of calculations which use a more physical representation of the lifetimes of the ground states of He I and He II than was adopted in earlier work on this process. New emission measure distributions are used to calculate the temperature variation with height. The results show that non-thermal motions can lead to enhancements of the He I and He II resonance line intensities by factors that are comparable with those required. Excitation by non-Maxwellian electron distributions would reduce the effects of non-thermal transport. The effects of non-thermal motions are more consistent with the observed spatial distribution of helium emission than are those of excitation by non-Maxwellian electron distributions alone. In particular, they account better for the observed line intensity ratio I(537.0 A)/I(584.3 A), and its variation with location.Comment: 12 pages, 7 figures, accepted to appear in MNRAS, LaTeX uses mn.st

    Collisional and Radiative Processes in Optically Thin Plasmas

    Get PDF
    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail

    RECENT PROGRESS IN LMIS THEORY

    Full text link
    corecore