24 research outputs found
Acoustic Search for High Energy Neutrinos in Lake Baikal: Status and Perspectives
The status and perspectives of the feasibility study to detect high energy cosmic neutrinos acoustically in Lake Baikal is presented. The concept of on acoustic array as a part of the Baikal Gigaton Volume Neutrino Telescope GVD based on results of simulation and background measurements is described
The optical module of Baikal-GVD
The Baikal-GVD neutrino telescope in Lake Baikal is intended for studying astrophysical neutrino fluxes by recording the Cherenkov radiation of the secondary muons and showers generated in neutrino interactions. The first stage of Baikal-GVD will be equipped with about 2300 optical modules. We describe the design of the optical module, the front-end electronics and the laboratory characterization and calibration before deployment
The optical detection unit for Baikal-GVD neutrino telescope
The first stage of the GVD-cluster composed of five strings was deployed in April 2014. Each string consists of two sections with 12 optical modules per section. A section is the basic detection unit of the Baikal neutrino telescope. We will describe the section design, review its basic elements – optical modules, FADC readout units, slow control and calibration systems, and present selected results for section in-situ tests in Lake Baikal
Status and perspectives of the BAIKAL-GVD project
The neutrino telescope Baikal-GVD in Lake Baikal will be a research infrastructure aimed mainly at studying astrophysical neutrino fluxes. The telescope will consist of clusters of strings – functionally independent sub-arrays. The deployment of the first demonstration cluster has been started in April 2013. In 2014 the deployment of the second stage of the demonstration cluster has been performed. We describe the configuration and design of the first GVD cluster and review the current status of cluster deployment in Lake Baikal
Baikal-GVD: Results, status and plans
The future next-generation neutrino telescope Baikal-GVD will be a km3-scale array aimed at the detection of astrophysical neutrino fluxes. It will have modular structure and consist of functionally independent sub-arrays – clusters of strings of optical modules. The prototyping phase of the project has been concluded in 2015 with the deployment of the first cluster of Baikal-GVD in Lake Baikal. We discuss the current status and perspectives of the Baikal-GVD project
Status and perspectives of the BAIKAL-GVD project
The neutrino telescope Baikal-GVD in Lake Baikal will be a research infrastructure aimed mainly at studying astrophysical neutrino fluxes. The telescope will consist of clusters of strings - functionally independent sub-arrays. The deployment of the first demonstration cluster has been started in April 2013. In 2014 the deployment of the second stage of the demonstration cluster has been performed. We describe the configuration and design of the first GVD cluster and review the current status of cluster deployment in Lake Baikal
The optical detection unit for Baikal-GVD neutrino telescope
The first stage of the GVD-cluster composed of five strings was deployed in April 2014. Each string consists of two sections with 12 optical modules per section. A section is the basic detection unit of the Baikal neutrino telescope. We will describe the section design, review its basic elements - optical modules, FADC readout units, slow control and calibration systems, and present selected results for section in-situ tests in Lake Baikal