449 research outputs found

    Ionic partitioning of KCl in AOT reverse micelles from molecular dynamics simulations

    Get PDF
    Reverse micelles are an important class of nanoreactors providing an array of applications. The structure and dynamics of aqueous reverse micelles have been intensely investigated, yet there are many subtleties involved in characterizing the arrangement of water and ionic species within these aggregates. The interfacial arrangement of water and dopants added to bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) reverse micelles were investigated by fully atomistic molecular dynamics simulations. Reverse micelles of increasing water to surfactant ratio were doped with concentrations of KCl from 0.0 to 1.0 M to analyze the partitioning of ions and water. Detailed analysis of pair density functions reveals that Cl− ions are embedded deep in the aqueous interior, and the K+ ions display a remarkable affinity for the interface. Our results confirm the existence of multiple layers of water, and an ordered multi-layer ionic arrangement that is driven by the negatively charged surfactant headgroup

    Computational Analysis of Water Dynamics in AOT Reverse Micelles

    Get PDF
    Aerosols can be modeled for detailed investigations using reverse micelles in the laboratory as well as in computational simulations. A long-standing question in the description of confined water under these conditions is that of a two-state model of core – interface or a three-state model of core – intermediate – interface. In this work, we present results of analysis of water dynamics inside reverse micelles from fully atomistic molecular dynamics simulations. The size and composition of reverse micelles is expressed through w0, the ratio of the number of water molecules to the number of surfactant molecules. Reverse micelles of diverse sizes, with w0 ranging from 5 to 20, were constructed with Sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant and simulated within isooctane solvent. Residence time and diffusion coefficients, in the simulations, both behaved increasingly like bulk water with the increase in size of reverse micelles. Rotational anisotropy autocorrelation was modeled using exponential functions in the short time range of 10–20 ps and longer time data were modeled as a power law fit. Similarly, the diffusion of water in the reverse micelles was also modeled on a power law fit. All these metrics demonstrate a clear progression towards bulk water behavior as the reverse micelle size increases. Additionally, our results also support a 3-layer model of water in a reverse micelle of core – intermediate – interface. These results extend the understanding of water dynamics in reverse micelles and provide further evidence for the 3-layer model

    Extracellular Vesicles and Intercellular Communication in the Central Nervous System

    Get PDF
    Neurons and glial cells of the central nervous system (CNS) release extracellular vesicles (EVs) to the interstitial fluid of the brain and spinal cord parenchyma. EVs contain proteins, nucleic acids and lipids that can be taken up by, and modulate the behaviour of, neighbouring recipient cells. The functions of EVs have been extensively studied in the context of neurodegenerative diseases. However, mechanisms involved in EV‐mediated neuron–glial communication under physiological conditions or healthy ageing remain unclear. A better understanding of the myriad roles of EVs in CNS homeostasis is essential for the development of novel therapeutics to alleviate and reverse neurological disturbances of ageing. Proteomic studies are beginning to reveal cell type‐specific EV cargo signatures that may one day allow us to target specific neuronal or glial cell populations in the treatment of debilitating neurological disorders. This review aims to synthesise the current literature regarding EV‐mediated cell–cell communication in the brain, predominantly under physiological conditions

    Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots

    Get PDF
    Plant responses to the environment are shaped by external stimuli and internal signaling pathways. In both the model plant Arabidopsis thaliana (Arabidopsis) and crop species, circadian clock factors are critical for growth, flowering, and circadian rhythms. Outside of Arabidopsis, however, little is known about the molecular function of clock gene products. Therefore, we sought to compare the function of Brachypodium distachyon (Brachypodium) and Setaria viridis (Setaria) orthologs of EARLY FLOWERING 3, a key clock gene in Arabidopsis. To identify both cycling genes and putative ELF3 functional orthologs in Setaria, a circadian RNA-seq dataset and online query tool (Diel Explorer) were generated to explore expression profiles of Setaria genes under circadian conditions. The function of ELF3 orthologs from Arabidopsis, Brachypodium, and Setaria was tested for complementation of an elf3 mutation in Arabidopsis. We find that both monocot orthologs were capable of rescuing hypocotyl elongation, flowering time, and arrhythmic clock phenotypes. Using affinity purification and mass spectrometry, our data indicate that BdELF3 and SvELF3 could be integrated into similar complexes in vivo as AtELF3. Thus, we find that, despite 180 million years of separation, BdELF3 and SvELF3 can functionally complement loss of ELF3 at the molecular and physiological level

    Adaptive working memory training does not produce transfer effects in cognition and neuroimaging

    Get PDF
    Despite growing interest in cognitive interventions from academia and industry, it remains unclear if working memory (WM) training, one of the most popular cognitive interventions, produces transfer effects. Transfer effects are training-induced gains in performance in untrained cognitive tasks, while practice effects are improvements in trained task. The goal of this study was to evaluate potential transfer effects by comprehensive cognitive testing and neuroimaging. In this prospective, randomized-controlled, and single-blind study, we administered an 8-week n-back training to 55 healthy middle-aged (50–64 years) participants. State-of-the-art multimodal neuroimaging was used to examine potential anatomic and functional changes. Relative to control subjects, who performed non-adaptive WM training, no near or far transfer effects were detected in experimental subjects, who performed adaptive WM training. Equivalently, no training-related changes were observed in white matter integrity, amplitude of low frequency fluctuations, glucose metabolism, functional and metabolic connectivity. Exploratory within-group comparisons revealed some gains in transfer tasks, which, however, cannot be attributed to an increased WM capacity. In conclusion, WM training produces transfer effects neither at the cognitive level nor in terms of neural structure or function. These results speak against a common view that training-related gains reflect an increase in underlying WM capacity. Instead, the presently observed practice effects may be a result of optimized task processing strategies, which do not necessarily engage neural plasticity

    Thermodiffusion in multicomponent n-alkane mixtures

    Get PDF
    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n-alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution

    A search for charged massive long-lived particles

    Get PDF
    We report on a search for charged massive long-lived particles (CMLLPs), based on 5.2 fb−1^{-1} of integrated luminosity collected with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} collider. We search for events in which one or more particles are reconstructed as muons but have speed and ionization energy loss (dE/dx)(dE/dx) inconsistent with muons produced in beam collisions. CMLLPs are predicted in several theories of physics beyond the standard model. We exclude pair-produced long-lived gaugino-like charginos below 267 GeV and higgsino-like charginos below 217 GeV at 95% C.L., as well as long-lived scalar top quarks with mass below 285 GeV.Comment: submitted to Phys. Rev. Letter

    Zgamma production and limits on anomalous ZZgamma and Zgammagamma couplings in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a measurement of ppbar->Zgamma->ll+gamma (l = e, mu) production with a data sample corresponding to an integrated luminosity of 6.2 fb^{-1} collected by the D0 detector at the Fermilab Tevatron ppbar Collider. The results of the electron and muon channels are combined, and we measure the total production cross section and the differential cross section dsigma/dp_T^gamma, where p_T^gamma is the momentum of the photon in the plane transverse to the beamline. The results obtained are consistent with the standard model predictions from next-to-leading order calculations. We use the transverse momentum spectrum of the photon to place limits on anomalous ZZgamma and Zgammagamma couplings

    Measurements of single top quark production cross sections and |Vtb| in ppbar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present measurements of production cross sections of single top quarks in \ppbar collisions at s=1.96  TeV\sqrt{s}=1.96\;\rm TeV in a data sample corresponding to an integrated luminosity of 5.4  fb−15.4\;\rm fb^{-1} collected by the D0 detector at the Fermilab Tevatron Collider. We select events with an isolated electron or muon, an imbalance in transverse energy, and two, three, or four jets, with one or two of them containing a bottom hadron. We obtain an inclusive cross section of \sigma({\ppbar}{\rargap}tb+X, tqb+X) = 3.43\pm^{0.73}_{0.74}\;\rm pb and use it to extract the CKM matrix element 0.79<∣VtbâˆŁâ‰€10.79 < |V_{tb}| \leq 1 at the 95% C.L. We also measure \sigma({\ppbar}{\rargap}tb+X) = 0.68\pm^{0.38}_{0.35}\;\rm pb and \sigma({\ppbar}{\rargap}tqb+X) = 2.86\pm^{0.69}_{0.63}\;\rm pb when assuming, respectively, tqbtqb and tbtb production rates as predicted by the standard model.Comment: 11 pages, 8 figures, submitted to Phys. Rev.

    Precise measurement of the top quark mass in the dilepton channel at D0

    Get PDF
    We measure the top quark mass (mt) in ppbar collisions at a center of mass energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events, where l denotes an electron, a muon, or a tau that decays leptonically. The data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat) +- 2.4(syst) GeV, which is in agreement with the current world average mt = 173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the dilepton channel.Comment: 7 pages, 4 figure
    • 

    corecore