60 research outputs found

    Sound-localization-related activation and functional connectivity of dorsal auditory pathway in relation to demographic, cognitive, and behavioral characteristics in age-related hearing loss

    Get PDF
    BackgroundPatients with age-related hearing loss (ARHL) often struggle with tracking and locating sound sources, but the neural signature associated with these impairments remains unclear.Materials and methodsUsing a passive listening task with stimuli from five different horizontal directions in functional magnetic resonance imaging, we defined functional regions of interest (ROIs) of the auditory “where” pathway based on the data of previous literatures and young normal hearing listeners (n = 20). Then, we investigated associations of the demographic, cognitive, and behavioral features of sound localization with task-based activation and connectivity of the ROIs in ARHL patients (n = 22).ResultsWe found that the increased high-level region activation, such as the premotor cortex and inferior parietal lobule, was associated with increased localization accuracy and cognitive function. Moreover, increased connectivity between the left planum temporale and left superior frontal gyrus was associated with increased localization accuracy in ARHL. Increased connectivity between right primary auditory cortex and right middle temporal gyrus, right premotor cortex and left anterior cingulate cortex, and right planum temporale and left lingual gyrus in ARHL was associated with decreased localization accuracy. Among the ARHL patients, the task-dependent brain activation and connectivity of certain ROIs were associated with education, hearing loss duration, and cognitive function.ConclusionConsistent with the sensory deprivation hypothesis, in ARHL, sound source identification, which requires advanced processing in the high-level cortex, is impaired, whereas the right–left discrimination, which relies on the primary sensory cortex, is compensated with a tendency to recruit more resources concerning cognition and attention to the auditory sensory cortex. Overall, this study expanded our understanding of the neural mechanisms contributing to sound localization deficits associated with ARHL and may serve as a potential imaging biomarker for investigating and predicting anomalous sound localization

    Experimental Study on an Innovative Double-Limb-Thin-Wall Bridge Pier with Longitudinal Replaceable Connecting Beams

    No full text
    Replaceable energy dissipation elements can reduce damage to main structures and improve seismic resistance of bridge structures. However, in existing studies, replaceable energy dissipation elements are mainly arranged in the transverse direction of the bridge structure, while little attention is given to the longitudinal direction of the bridge, which also suffers from serious damage under earthquakes. This paper proposes an innovative double-limb-thin-wall (DLTW) bridge pier, which consists of two thin-limb-wall columns in the longitudinal direction of the bridge and replaceable steel connecting beams (RSCBs) between them. Quasistatic tests of the proposed innovative DLTW pier with RSCBs (DLTW-RSCBs), a conventional DLTW pier, and a DLTW pier with RC connecting beams (DLTW-RCCBs) were conducted to investigate the longitudinal seismic performance of the innovative bridge pier. The test results demonstrate that the use of connecting beams (CBs) can improve the lateral bearing capacity and cumulative dissipated energy of the DLTW pier, while the improved amplitudes are more significant for the DLTW-RSCB specimen, about 21.6% and 13.4%, respectively. Moreover, due to the protection of the CBs, the DLTW-RCCBs and DLTW-RSCBs have lower damage and residual drift ratios than the DLTW-NBs before the failure of the CBs. However, the differences between these three piers gradually disappear with the failure of the CBs, and the piers are finally destroyed as a result of the failure modes of buckling and low-cycle fatigue fracture of the longitudinal bars at the column bottom. Moreover, RSCBs can still be rapidly repaired after damage failure of the DLTW-RSCB specimen. Therefore, setting replaceable steel beams between DLTW piers can effectively improve seismic performance and reduce seismic damage and repair costs of DLTW bridge piers under earthquake loading, which are valuable for sustainability during the service stage. The outcomes of this work can serve as a reference for further development of structural forms for the innovated pier

    Magnetic-Based Indoor Localization Using Smartphone via a Fusion Algorithm

    No full text

    Two-stage optimal dispatching model and benefit allocation strategy for hydrogen energy storage system-carbon capture and utilization system-based micro-energy grid

    No full text
    To fully utilize the abundant renewable energy resources in county-level areas of China, this paper designs a novel structure of micro-energy grid integrating hydrogen energy storage (HES) system and carbon capture and utilization (CCU) system (HES-CCU-based MEG). And a carbon emission-green certificate equivalent interaction mechanism is established. Then, a two-stage optimal dispatching framework is proposed for mitigating the impact of uncertainty variables, including a day-ahead robust dispatching model and a real-time rolling optimization model. Thirdly, an entropy-Shapley-based benefit allocation method is constructed to allocate the benefits in dimensions of energy conservation, carbon emission reduction, and renewable power consumption among various devices. Finally, a micro-energy grid in Henan province, China, is selected as an example for case study. The results show that: (1) HES could transfer surplus renewable power and low-priced power to periods with high power prices, while CCU could achieves the cycle and utilization of CO2, leading to a decrease in power purchase costs and carbon emissions by 7.85% and 0.47%, respectively. (2) The two-stage optimal dispatching model gives full play to the flexibility adjustment ability of each device, mitigates the deviations caused by uncertainty variables, and formulates the optimal dispatching strategy. (3) The entropy-Shapley-based benefit allocation method could evaluate the contributions of each device in different dimensions, effectively, ensuring the rationality of benefit allocation results. Overall, the proposed model and method could utilize renewable energy resources in county-level areas, which is better to promote the clean and low-carbon transformation of the overall energy structure

    Source Analysis and Contamination Assessment of Potentially Toxic Element in Soil of Small Watershed in Mountainous Area of Southern Henan, China

    No full text
    In this study, the concentrations of potentially toxic elements in 283 topsoil samples were determined. Håkanson toxicity response coefficient modified matter element extension model was introduced to evaluate the soil elements contamination, and the results were compared with the pollution index method. The sources and spatial distribution of soil elements were analyzed by the combination of the PMF model and IDW interpolation. The results are as follows, 1: The concentration distribution of potentially toxic elements is different in space. Higher concentrations were found in the vicinity of the mining area and farmland. 2: The weight of all elements has changed significantly. The evaluation result of the matter-element extension model shows that 68.55% of the topsoil in the study area is clean soil, and Hg is the main contamination element. The evaluation result is roughly the same as that of the pollution index method, indicating that the evaluation result of the matter-element extension model with modified is accurate and reasonable. 3: Potentially toxic elements mainly come from the mixed sources of atmospheric sedimentation and agricultural activities (22.59%), the mixed sources of agricultural activities and mining (20.26%), the mixed sources of traffic activities, nature and mining (36.30%), the mixed sources of pesticide use and soil parent material (20.85%)

    Selecting Targeted Symptoms/Syndromes for Syndromic Surveillance in Rural China

    Get PDF
    Establishing automated syndromic surveillance in rural China was improper due to lack of required hardware facilities. Thus, more convenient syndromic surveillance method is needed. Before establishing system, ten targeted symptoms (i.e, fever, cough, sore throat, diarrhea, nausea/vomiting, headache, rash, mucocutaneous hemorrhage, convulsion and disturbance of consciousness) were determined under surveillance after epidemiological analysis on historical data of infectious diseases, literature review, expert consultation meeting, workshop and field investigation. This abstract describes the process of selecting the targeted symptoms, which may provide methods and evidences for other resource poor settings to construct similar surveillance system

    Selecting Targeted Symptoms/Syndromes for Syndromic Surveillance in Rural China

    No full text
    OBJECTIVE: To select the potential targeted symptoms/syndromes as early warning indicators for epidemics or outbreaks detection in rural China. INTRODUCTION: Patients’ chief complaints (CCs) as a common data source, has been widely used in syndromic surveillance due to its timeliness, accuracy and availability (1). For automated syndromic surveillance, CCs always classified into predefined syndromic categories to facilitate subsequent data aggregation and analysis. However, in rural China, most outpatient doctors recorded the information of patients (e.g. CCs) into clinic logs manually rather than computers. Thus, more convenient surveillance method is needed in the syndromic surveillance project (ISSC). And the first and important thing is to select the targeted symptoms/syndromes. METHODS: Epidemiological analysis was conducted on data from case report system in Jingmen City (one study site in ISSC) from 2004 to 2009. Initial symptoms/syndromes were selected by literature reviews. And finally expert consultation meetings, workshops and field investigation were held to confirm the targeted symptoms/syndromes. RESULTS: 10 kinds of infectious diseases, 6 categories of emergencies, and 4 bioterrorism events (i.e. plague, anthrax, botulism and hemorrhagic fever) were chose as specific diseases/events for monitoring (Table 1). Two surveillance schemes were developed by reviewing on 565 literatures about clinical conditions of specific diseases/events and 14 literatures about CCs based syndromic surveillance. The former one was to monitor symptoms (19 initial symptoms), and then aggregation or analysis on single or combined symptom(s); and the other one was to monitor syndromes (9 initial syndromes) directly (Table 2). The consultation meeting and field investigation identified three issues which should be considered: 1) the abilities of doctors especially village doctors to understand the definitions of symptoms/syndromes; 2) the workload of data collection; 3) the sensitive and specific of each symptom/syndrome. Finally, Scheme 1 was used and 10 targeted symptoms were determined (Table 2). CONCLUSIONS: We should take the simple, stability and feasibility of operation, and also the local conditions into account before establishing a surveillance system. Symptoms were more suitable for monitoring compared to syndromes in resource-poor settings. Further evaluated and validated would be conducted during implementation. Our study might provide methods and evidences for other developing countries with limited conditions in using automated syndromic surveillance system, to construct similar early warning system
    • …
    corecore