22 research outputs found

    Modelling Innovation Process in Multidisciplinary Course in New Product Development and Inventive Problem Solving

    Get PDF
    The paper is addressing the needs of the universities regarding qualification of students as future R&D specialists in efficient techniques for successfully running innovation process. In comparison with the engineers, the students often demonstrate lower motivation in learning systematic inventive techniques, like for example TRIZ methodology, and prefer random brainstorming for idea generation. The quality of obtained solutions also depends on the level of completeness of the problem analysis, which is more complex and time consuming in the case of interdisciplinary systems. The paper briefly describes one-semester-course of 60 hours in new product development with the Advanced Innovation Design Approach and TRIZ methodology, in which a typical industrial innovation process for one selected interdisciplinary mechatronic product is modelled

    Sustainable European Collaboration in the Field of Knowledge-Based Innovation with TRIZ

    No full text
    The European TRIZ Association ETRIA acts as a connecting link between scientific institutions, universities and other educational organizations, industrial companies and individuals concerned with conceptual and practical questions relating to organization of innovation process, invention methods, and innovation knowledge. In the meantime, more than TFC 1000 papers or presentation of scientists, educators, and practitioners from all over the world are available at the official ETRIA website. Numerous research projects were supported or funded by the European Commission

    Modeling and productivity prediction of the companies-internal crowdsourcing-based ideation

    No full text
    The internal crowdsourcing-based ideation within a company can be defined as an involvement of its staff, specialists, managers, and other employees, to propose solution ideas for a pre-defined problem. This paper addresses a question, how many participants of the company-internal ideation process are required to nearly reach the ideation limit for the problems with a finite number of workable solutions. To answer the research question, the author proposes a set of metrics and a non-linear ideation performance function with a positive decreasing slope and ideation limit for the closed-ended problems. Three series of experiments helped to explore relationships between the metric attributes and resulted in a mathematical model which allows companies to predict the productivity metrics of their crowdsourcing ideation activities such as quantity of different ideas and ideation limit as a function of the number of contributors, their average personal creativity and ideation efficiency of a contributors’ group

    Enhancing Innovation and Entrepreneurial Competences of Engineering Students through a Systematic Cross-Industry Innovation Learning Course

    No full text
    CONTEXT The paper addresses the needs of medium and small businesses regarding qualification of R&D specialists in the interdisciplinary cross-industry innovation, which promises a considerable reduction of investments and R&D expenditures. The cross-industry innovation is commonly understood as identification of analogies and transfer of technologies, processes, technical solutions, working principles or business models between industrial sectors. However, engineering graduates and specialists frequently lack the advanced skills and knowledge required to run interdisciplinary innovation across the industry boundaries. PURPOSE The study compares the efficiency of the cross-industry innovation methods in one semester project-oriented course. It identifies the individual challenges and preferred working techniques of the students with different prior knowledge, sets of experiences, and cultural contexts, which require attention by engineering educators. APPROACH Two parallel one-semester courses were offered to the mechanical and process engineering students enrolled in bachelor’s and master’s degree programs at the faculty of mechanical and process engineering. The students from different years of study were working in 12 teams of 3…6 persons each on different innovation projects, spending two hours a week in the classroom and additionally on average two hours weekly on their project research. Students' feedback and self-assessments concerning gained skills, efficiency of learned tools and intermediate findings were documented, analysed, and discussed regularly along the course. RESULTS Analysis of numerous student projects allows to compare and to select the tools most appropriate for finding cross-industry solutions, such as thinking in analogies, web monitoring, function-oriented search, databases of technological effects and processes, special creativity techniques and others. The utilization of learned skills in practical innovation work strengthens the motivation of students and enhances their entrepreneurial competences. Suggested learning course and given recommendations help facilitate sustainable education of ambitious specialists. CONCLUSIONS The structured cross-industry innovation can be successfully run as a systematic process and learned in one semester course. The choice of the preferred working teqniques made by the students is affected by their prior knowledge in science, practical experience, and cultural contexts. Major outcomes of the students’ innovation projects such as feasibility, novelty and customer value of the concepts are primarily influenced by students’ engineering design skills, prior knowledge of the technologies, and industrial or business experience

    Easy-to-Use Ideation Technique Based on Five Cross-Industry Analogies Enhances Engineering Creativity of Students and Specialists

    No full text
    Cross-industry innovation is commonly understood as identification of analogies and interdisciplinary transfer or copying of technologies, processes, technical solutions, working principles or models between industrial sectors. In general, creative thinking in analogies belongs to the efficient ideation techniques. However, engineering graduates and specialists frequently lack the skills to think across the industry boundaries systematically. To overcome this drawback an easy-to-use method based on five analogies has been evaluated through its applications by students and engineers in numerous experiments and industrial case studies. The proposed analogies help to identify and resolve engineering contradictions and apply approaches of the Theory of Inventive Problem Solving TRIZ and biomimetics. The paper analyses the outcomes of the systematized analogies-based ideation and outlines that its performance continuously grows with the engineering experience. It defines metrics for ideation efficiency and ideation performance function

    Best Practices for Systematic Innovation with TRIZ Methodology in Automotive Industry

    No full text
    In the modern knowledge-based and digital economy, the value of knowledge is growing relative to other assets and new intellectual property is being created at an ever-increasing rate. Therefore, the ability to find non-trivial solutions, systematically generate new concepts, and create intellectual property rapidly become crucial to achieving competitive advantage and leveraging the intellectual potential of organizations
    corecore