5 research outputs found

    The Modulation of Hippocampus Plasticity

    Get PDF
    The hippocampus is a brain region that plays a vital role not only in learning and memory but also in a variety of cognitive processes. Additionally, the hippocampus is known for its plasticity or its ability to adapt structural and functional properties in response to internal and external factors. This plasticity is intricately modulated by a variety of factors, including neurotransmitters (such as glutamate), neurotrophic factors (such as BDNF, IGF-1, VEGFα, and NGF), cytokines, chemokines, adipokines (such as leptin and adiponectin), and hormones (such as cortisol, beta-endorphins, thyroid hormones, and noradrenaline). Changes in the number, length, type, and shape of dendritic spines within the hippocampus can influence neurotransmission, and subsequently behavior, through modulation of glutamatergic neurons. There are several interventions, including pharmacological treatments (such as antidepressants or multimodal drugs) and non-pharmacological interventions (such as non-invasive brain stimulation of targeted regions, physical exercise, and an enriched environment) that promote neurogenesis in the dentate gyrus, resulting in beneficial effects on cognition and mood. Both types of therapies have the potential to increase connectivity between the hippocampus and other areas of the brain involved in motor and cognitive control, and thus, improve performance in specific tasks

    Non-Invasive Systems Application in Traumatic Brain Injury Rehabilitation

    No full text
    Traumatic brain injury (TBI) is a significant public health concern, often leading to long-lasting impairments in cognitive, motor and sensory functions. The rapid development of non-invasive systems has revolutionized the field of TBI rehabilitation by offering modern and effective interventions. This narrative review explores the application of non-invasive technologies, including electroencephalography (EEG), quantitative electroencephalography (qEEG), brain–computer interface (BCI), eye tracking, near-infrared spectroscopy (NIRS), functional near-infrared spectroscopy (fNIRS), magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) in assessing TBI consequences, and repetitive transcranial magnetic stimulation (rTMS), low-level laser therapy (LLLT), neurofeedback, transcranial direct current stimulation (tDCS), transcranial alternative current stimulation (tACS) and virtual reality (VR) as therapeutic approaches for TBI rehabilitation. In pursuit of advancing TBI rehabilitation, this narrative review highlights the promising potential of non-invasive technologies. We emphasize the need for future research and clinical trials to elucidate their mechanisms of action, refine treatment protocols, and ensure their widespread adoption in TBI rehabilitation settings

    Quantitative EEG as a Biomarker in Evaluating Post-Stroke Depression

    No full text
    Introduction: Post-stroke depression (PSD) has complex pathophysiology determined by various biological and psychological factors. Although it is a long-term complication of stroke, PSD is often underdiagnosed. Given the diagnostic role of quantitative electroencephalography (qEEG) in depression, it was investigated whether a possible marker of PSD could be identified by observing the evolution of the (Delta + Theta)/(Alpha + Beta) Ratio (DTABR), respectively the Delta/Alpha Ratio (DAR) values in post-stroke depressed patients (evaluated through the HADS-D subscale). Methods: The current paper analyzed the data of 57 patients initially selected from a randomized control trial (RCT) that assessed the role of N-Pep 12 in stroke rehabilitation. EEG recordings from the original trial database were analyzed using signal processing techniques, respecting the conditions (eyes open, eyes closed), and several cognitive tasks. Results: We observed two significant associations between the DTABR values and the HADS-D scores of post-stroke depressed patients for each of the two visits (V1 and V2) of the N-Pep 12 trial. We recorded the relationships in the Global (V1 = 30 to 120 days after stroke) and Frontal Extended (V2 = 90 days after stroke) regions during cognitive tasks that trained attention and working memory. For the second visit, the association between the analyzed variables was negative. Conclusions: As both our relationships were described during the cognitive condition, we can state that the neural networks involved in processing attention and working memory might go through a reorganization process one to four months after the stroke onset. After a period longer than six months, the process could localize itself at the level of frontal regions, highlighting a possible divergence between the local frontal dynamics and the subjective well-being of stroke survivors. QEEG parameters linked to stroke progression evolution (like DAR or DTABR) can facilitate the identification of the most common neuropsychiatric complication in stroke survivors

    Quantitative EEG as a Biomarker in Evaluating Post-Stroke Depression

    No full text
    Introduction: Post-stroke depression (PSD) has complex pathophysiology determined by various biological and psychological factors. Although it is a long-term complication of stroke, PSD is often underdiagnosed. Given the diagnostic role of quantitative electroencephalography (qEEG) in depression, it was investigated whether a possible marker of PSD could be identified by observing the evolution of the (Delta + Theta)/(Alpha + Beta) Ratio (DTABR), respectively the Delta/Alpha Ratio (DAR) values in post-stroke depressed patients (evaluated through the HADS-D subscale). Methods: The current paper analyzed the data of 57 patients initially selected from a randomized control trial (RCT) that assessed the role of N-Pep 12 in stroke rehabilitation. EEG recordings from the original trial database were analyzed using signal processing techniques, respecting the conditions (eyes open, eyes closed), and several cognitive tasks. Results: We observed two significant associations between the DTABR values and the HADS-D scores of post-stroke depressed patients for each of the two visits (V1 and V2) of the N-Pep 12 trial. We recorded the relationships in the Global (V1 = 30 to 120 days after stroke) and Frontal Extended (V2 = 90 days after stroke) regions during cognitive tasks that trained attention and working memory. For the second visit, the association between the analyzed variables was negative. Conclusions: As both our relationships were described during the cognitive condition, we can state that the neural networks involved in processing attention and working memory might go through a reorganization process one to four months after the stroke onset. After a period longer than six months, the process could localize itself at the level of frontal regions, highlighting a possible divergence between the local frontal dynamics and the subjective well-being of stroke survivors. QEEG parameters linked to stroke progression evolution (like DAR or DTABR) can facilitate the identification of the most common neuropsychiatric complication in stroke survivors

    Role and Impact of Cerebrolysin for Ischemic Stroke Care

    No full text
    Stroke is still a significant health problem that affects millions of people worldwide, as it is the second-leading cause of death and the third-leading cause of disability. Many changes have occurred in the treatment of acute ischemic stroke. Although the innovative concepts of neuroprotection and neurorecovery have been vigorously investigated in a substantial number of clinical studies in the past, only a few trials managed to increase the number of promising outcomes with regard to the multidimensional construct of brain protection and rehabilitation. In terms of pharmacological therapies with proven benefits in the post-ischemic process, drugs with neurorestorative properties are thought to be effective in both the acute and chronic phases of stroke. One significant example is Cerebrolysin, a combination of amino acids and peptides that mimic the biological functions of neurotrophic factors, which has been shown to improve outcomes after ischemic stroke, while preserving a promising safety profile. The purpose of this paper is to offer an overview on the role and impact of Cerebrolysin for ischemic stroke care, by touching on various aspects, from its complex, multimodal and pleiotropic mechanism of action, to its efficacy and safety, as well as cost effectiveness
    corecore