1,780 research outputs found

    Cooling nonlinear lattices toward localisation

    Full text link
    We describe the energy relaxation process produced by surface damping on lattices of classical anharmonic oscillators. Spontaneous emergence of localised vibrations dramatically slows down dissipation and gives rise to quasi-stationary states where energy is trapped in the form of a gas of weakly interacting discrete breathers. In one dimension (1D), strong enough on--site coupling may yield stretched--exponential relaxation which is reminiscent of glassy dynamics. We illustrate the mechanism generating localised structures and discuss the crucial role of the boundary conditions. For two--dimensional (2D) lattices, the existence of a gap in the breather spectrum causes the localisation process to become activated. A statistical analysis of the resulting quasi-stationary state through the distribution of breathers' energies yield information on their effective interactions.Comment: 10 pages, 11 figure

    Slow energy relaxation and localization in 1D lattices

    Full text link
    We investigate the energy relaxation process produced by thermal baths at zero temperature acting on the boundary atoms of chains of classical anharmonic oscillators. Time-dependent perturbation theory allows us to obtain an explicit solution of the harmonic problem: even in such a simple system nontrivial features emerge from the interplay of the different decay rates of Fourier modes. In particular, a crossover from an exponential to an inverse-square-root law occurs on a time scale proportional to the system size NN. A further crossover back to an exponential law is observed only at much longer times (of the order N3N^3). In the nonlinear chain, the relaxation process is initially equivalent to the harmonic case over a wide time span, as illustrated by simulations of the β\beta Fermi-Pasta-Ulam model. The distinctive feature is that the second crossover is not observed due to the spontaneous appearance of breathers, i.e. space-localized time-periodic solutions, that keep a finite residual energy in the lattice. We discuss the mechanism yielding such solutions and also explain why it crucially depends on the boundary conditions.Comment: 16 pages, 6 figure

    Coupled transport in rotor models

    Get PDF
    Acknowledgement One of us (AP) wishes to acknowledge S. Flach for enlightening discussions about the relationship between the DNLS equation and the rotor model.Peer reviewedPublisher PD

    Energy diffusion in hard-point systems

    Full text link
    We investigate the diffusive properties of energy fluctuations in a one-dimensional diatomic chain of hard-point particles interacting through a square--well potential. The evolution of initially localized infinitesimal and finite perturbations is numerically investigated for different density values. All cases belong to the same universality class which can be also interpreted as a Levy walk of the energy with scaling exponent 3/5. The zero-pressure limit is nevertheless exceptional in that normal diffusion is found in tangent space and yet anomalous diffusion with a different rate for perturbations of finite amplitude. The different behaviour of the two classes of perturbations is traced back to the "stable chaos" type of dynamics exhibited by this model. Finally, the effect of an additional internal degree of freedom is investigated, finding that it does not modify the overall scenarioComment: 16 pages, 15 figure

    Negative Temperature States in the Discrete Nonlinear Schroedinger Equation

    Get PDF
    We explore the statistical behavior of the discrete nonlinear Schroedinger equation. We find a parameter region where the system evolves towards a state characterized by a finite density of breathers and a negative temperature. Such a state is metastable but the convergence to equilibrium occurs on astronomical time scales and becomes increasingly slower as a result of a coarsening processes. Stationary negative-temperature states can be experimentally generated via boundary dissipation or from free expansions of wave packets initially at positive temperature equilibrium.Comment: 4 pages, 5 figure

    Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis

    Full text link
    We study heat transport in a chain of harmonic oscillators with random elastic collisions between nearest-neighbours. The equations of motion of the covariance matrix are numerically solved for free and fixed boundary conditions. In the thermodynamic limit, the shape of the temperature profile and the value of the stationary heat flux depend on the choice of boundary conditions. For free boundary conditions, they also depend on the coupling strength with the heat baths. Moreover, we find a strong violation of local equilibrium at the chain edges that determine two boundary layers of size N\sqrt{N} (where NN is the chain length), that are characterized by a different scaling behaviour from the bulk. Finally, we investigate the relaxation towards the stationary state, finding two long time scales: the first corresponds to the relaxation of the hydrodynamic modes; the second is a manifestation of the finiteness of the system.Comment: Submitted to Journal of Physics A, Mathematical and Theoretica

    Looking for a simple Big Five factorial structure in the domain of adjectives.

    Get PDF
    The Big Five factors structure is currently the benchmark for personality dimensions. In the domain of adjectives, various instruments have been developed to measure the Big Five. In this contribution the authors propose a methodology to find a simple factorial structure and apply this methodology to the domain of Big Five as measured by adjectives. Using data collected on a sample of 337 Ss (mean age 21.69 yrs), a five-factor benchmark structure is proposed derived from the 50 best marker adjectives selected among the adjectives contained in three instruments specifically developed to measure the Big Five (i.e., L. R. Goldberg's 100 adjectives list, IASR-B5, and SACBIF (1992)). They use this common factor structure (or benchmark structure) to investigate the differences and the similarities between the three operationalizations of the Big Five, and to investigate the placements of the full set of adjectives contained in the three instruments. The main features of the proposed methodology and the generalizability of the obtained results are discussed

    Geometric dynamical observables in rare gas crystals

    Full text link
    We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard mehods of classical statistical mechanics, i.e. Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.Comment: RevTeX, 19 pages, 6 PostScript figures, submitted to Phys. Rev.

    Desynchronization in diluted neural networks

    Full text link
    The dynamical behaviour of a weakly diluted fully-inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochastic-like regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase-locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of ``stable chaos'', i.e. by observing that the stochastic-like behaviour is "limited" to a an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.Comment: 11 pages, 13 figures, submitted to Phys. Rev.
    corecore