39 research outputs found

    Over-represented sequences located on UTRs are potentially involved in regulatory functions

    Get PDF
    Eukaryotic gene expression must be coordinated for the proper functioning of biological processes. This coordination can be achieved both at the transcriptional and post-transcriptional levels. In both cases, regulatory sequences placed at either promoter regions or on UTRs function as markers recognized by regulators that can then activate or repress different groups of genes according to necessity. While regulatory sequences involved in transcription are quite well documented, there is a lack of information on sequence elements involved in post-transcriptional regulation. We used a statistical over-representation method to identify novel regulatory elements located on UTRs. An exhaustive search approach was used to calculate the frequency of all possible n-mers (short nucleotide sequences) in 16,160 human genes of NCBI RefSeq sequences and to identify any peculiar usage of n-mers on UTRs. After a stringent filtering process, we identified circa 4,000 highly over-represented n-mers on UTRs. We provide evidence that these n-mers are potentially involved in regulatory functions. Identified n-mers overlap with previously identified binding sites for HuR and Tia1 and, AU-rich and GU-rich sequences. We determined also that over-represented n-mers are particularly enriched in a group of 159 genes directly involved in tumor formation. Finally, a method to cluster n-mer groups allowed the identification of putative gene networks.Over-represented sequences, UTRs, regulatory functions

    Patchy Interspecific Sequence Similarities Efficiently Identify Positive cis-Regulatory Elements in the Sea Urchin

    Get PDF
    We demonstrate that interspecific sequence conservation can provide a systematic guide to the identification of functional cis-regulatory elements within a large expanse of genomic DNA. The test was carried out on the otx gene of Strongylocentrotus purpuratus. This gene plays a major role in the gene regulatory network that underlies endomesoderm specification in the embryo. The cis-regulatory organization of the otx gene is expected to be complex, because the gene has three different start sites (X. Li, C.-K. Chuang, C.-A. Mao, L. M. Angerer, and W. H. Klein, 1997, Dev. Biol. 187, 253–266), and it is expressed in many different spatial domains of the embryo. BAC recombinants containing the otx gene were isolated from Strongylocentrotus purpuratus and Lytechinus variegatus libraries, and the ordered sequence of these BACs was obtained and annotated. Sixty kilobases of DNA flanking the gene, and included in the BAC sequence from both species, were scanned computationally for short conserved sequence elements. For this purpose, we used a newly constructed software package assembled in our laboratory, “FamilyRelations.” This tool allows detection of sequence similarities above a chosen criterion within sliding windows set at 20–50 bp. Seventeen partially conserved regions, most a few hundred base pairs long, were amplified from the S. purpuratus BAC DNA by PCR, inserted in an expression vector driving a CAT reporter, and tested for cis-regulatory activity by injection into fertilized S. purpuratus eggs. The regulatory activity of these constructs was assessed by whole-mount in situ hybridization (WMISH) using a probe against CAT mRNA. Of the 17 constructs, 11 constructs displayed spatially restricted regulatory activity, and 6 were inactive in this test. The domains within which the cis-regulatory constructs were expressed are approximately consistent with results from a WMISH study on otx expression in the embryo, in which we used probes specific for the mRNAs generated from each of the three transcription start sites. Four separate cis-regulatory elements that specifically produce endomesodermal expression were identified, as well as ubiquitously active elements, and ectoderm-specific elements. We confirm predictions from other work with respect to target sites for specific transcription factors within the elements that express in the endoderm

    Reduced Expression of Fumarate Hydratase in Clear Cell Renal Cancer Mediates HIF-2α Accumulation and Promotes Migration and Invasion

    Get PDF
    Germline mutations of FH, the gene that encodes for the tricarboxylic acid TCA (TCA) cycle enzyme fumarate hydratase, are associated with an inherited form of cancer referred to as Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). Individuals with HLRCC are predisposed to the development of highly malignant and lethal renal cell carcinoma (RCC). The mechanisms of tumorigenesis proposed have largely focused on the biochemical consequences of loss of FH enzymatic activity. While loss of the tumor suppressor gene von Hippel Lindau (VHL) is thought to be an initiating event for the majority of RCCs, a role for FH in sporadic renal cancer has not been explored. Here we report that FH mRNA and protein expression are reduced in clear cell renal cancer, the most common histologic variant of kidney cancer. Moreover, we demonstrate that reduced FH leads to the accumulation of hypoxia inducible factor- 2α (HIF-2α), a transcription factor known to promote renal carcinogenesis. Finally, we demonstrate that overexpression of FH in renal cancer cells inhibits cellular migration and invasion. These data provide novel insights into the tumor suppressor functions of FH in sporadic kidney cancer

    Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network

    Get PDF
    The blimp1/krox gene of Strongylocentrotus purpuratus, formerly krox1, encodes zinc finger transcription factors which play a central role in both early and late endomesoderm specification. Here we show that there are two alternative splice forms transcribed under the control of different regulatory regions. The blimp1/krox1b form was previously unknown, and is the form expressed during cleavage, beginning 6–9 h postfertilization. This form is required for the early events of endomesoderm specification. A different splice variant, blimp1/krox1a, is expressed only from gastrula stage onward. During cleavage stages the blimp1/krox gene is expressed in the large micromeres and veg2 descendents. Soon after, it is expressed in the ring of specified mesoderm cells at the vegetal pole of the blastula. Its expression is later restricted to the blastopore region and the posterior of the invaginating archenteron, and finally to the midgut and hindgut of the pluteus larva. The expression of blimp1/krox is dynamic, and involves several distinct spatial territories. A GFP recombinant BAC was created by substituting the GFP coding sequence for that of the second exon (1b), in order to distinguish the expression pattern of the early form from that of the late form. This construct closely mimics blimp1/krox1b expression during early stages of sea urchin development. To expand our knowledge of the downstream linkages of this gene, additional experiments were carried out using antisense morpholino oligos (MASO). We confirmed previously published data that blimp1/krox autoregulates its own expression, but discovered, surprisingly, that this gene represses rather than activates itself. This negative autoregulation is restricted to the mesodermal and probably skeletogenic territories during the blastula stage, as shown by in situ hybridization analysis of MASO injected embryos. The MASO perturbation analysis also revealed blimp1/krox inputs into other genes of the endomesoderm regulatory network

    Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula

    No full text
    The sea urchin regulatory gene Spblimp1/krox produces alternatively transcribed and spliced isoforms, 1a and 1b, which have different temporal and spatial patterns of expression. Here we describe a cis-regulatory module that controls the expression of the 1a splice form in the midgut and hindgut at the beginning of gastrulation. Conserved sequence patches revealed by a comparison of the blimp1/krox locus in Strongylocentrotus purpuratus and Lytechinus variegatus genomes were tested by gene transfer, in association with GFP or CAT reporter genes. An expression construct containing a conserved sequence patch immediately 5′ of exon 1a included the transcription initiation site for blimp1/krox1a. This construct displays specific mid and hindgut expression, indicating that these are the locations of endogenous blimp1/krox1a transcription during the gastrula stage. Its sequence contains binding sites for Brn1/2/4, Otx, and Blimp1/Krox itself, as predicted in a prior regulatory network analysis

    Recovery of Developmentally Defined Gene Sets from High-Density cDNA Macroarrays

    Get PDF
    New technologies for isolating differentially expressed genes from large arrayed cDNA libraries are reported. These methods can be used to identify genes that lie downstream of developmentally important transcription factors and genes that are expressed in specific tissues, processes, or stages of embryonic development. Though developed for the study of gene expression during the early embryogenesis of the sea urchin Strongylocentrotus purpuratus, these technologies can be applied generally. Hybridization parameters were determined for the reaction of complex cDNA probes to cDNA libraries carried on six nylon filters, each containing duplicate spots from 18,432 bacterial clones (macroarrays). These libraries are of sufficient size to include nearly all genes expressed in the embryo. The screening strategy we have devised is designed to overcome inherent sensitivity limitations of macroarray hybridization and thus to isolate differentially expressed genes that are represented only by low-prevalence mRNAs. To this end, we have developed improved methods for the amplification of cDNA from small amounts of tissue (as little as ∼300 sea urchin embryos, or 2 × 10^5 cells, or about 10 ng of mRNA) and for the differential enhancement of probe sequence concentration by subtractive hybridization. Quantitative analysis of macroarray hybridization shows that these probes now suffice for detection of differentially expressed mRNAs down to a level below five molecules per average embryo cell

    Adipose Tissue-Secreted Factors Alter Bladder Cancer Cell Migration

    No full text
    Background. Obesity is associated with an increased risk of bladder cancer recurrence. This study investigated the role of adipose tissue in bladder cancer progression. Methods. Gene expression profiling was performed on adipose tissues collected from normal weight (n=5), overweight (n=11), and obese (n=10) patients with invasive bladder cancer, and adipose stromal cells (ASCs) were obtained from two normal weight, two overweight, and two obese patients. Conditioned media (CM) was characterized and evaluated for its effects on the proliferation, migration, and invasive potential of T24 bladder cancer cells. Results. Expression profiling demonstrated depot-specific or body mass index-specific differences. Increased T24 cell migration was observed using CM harvested from all ASCs. ASC CM from an obese patient significantly increased T24 cell migration and invasion compared to ASC CM collected from normal weight and overweight patients. We identified abundant expression of CXCL1, PAI1, IL6, CX3CL1, and CCL2 in all CM. Exogenous treatment of T24 cells with PAI1, IL6, and CXCL1 enhanced migration. Depletion of CXCL1, PAI1, and IL6 in an obese patient ASC CM abrogated T24 migration. Conclusion. Factors secreted by adipose tissue influence the migration of bladder tumor cells and could play an active role in tumor progression
    corecore