26 research outputs found

    About disposition of energy levels

    Full text link
    The unique properties of central potential of the form −βe−rrγ-\beta e^{-r}r^{\gamma} were studied using the recently developed critical parameter technique. The particular cases of γ=0\gamma=0 and γ=−1\gamma=-1 yield, respectively, the exponential and Yukawa potentials widely used in the atomic, molecular and nuclear physics. We found different behavior of the energy levels of this potential for three different ranges of the value of γ\gamma. For γ≥0\gamma\geq0 it was found that the energy of bound states with the same principal quantum number NN decreases with increasing angular momentum ℓ\ell. The Gaussian and Woods-Saxon potentials also show this behavior. On the contrary, for −2≤γ≤−1-2\leq\gamma\leq-1 increasing ℓ\ell gives a higher energy, resembling the Hulthen potential. However, a potential with −1<γ<0-1<\gamma<0 possesses mixed properties, which give rise to several interesting results. For one, the order of energy levels with different quantum numbers is not preserved when varying the parameter β\beta. This leads to a quantum degeneracy of the states, and in fact, for a given value of γ\gamma we can find the values βthr\beta_{thr} for which two energy levels with different quantum numbers coincide. Another interesting phenomena is the possibility, for some values of γ\gamma in this range, for two new energy levels with different quantum numbers to appear simultaneously when β\beta reaches their common critical value.Comment: 10 pages, 3 table

    Back-to-back emission of the electrons in double photoionization of helium

    Full text link
    We calculate the double differential distributions and distributions in recoil momenta for the high energy non-relativistic double photoionization of helium. We show that the results of recent experiments is the pioneering experimental manifestation of the quasifree mechanism for the double photoionization, predicted long ago in our papers. This mechanism provides a surplus in distribution over the recoil momenta at small values of the latter, corresponding to nearly "back-to-back" emission of the electrons. Also in agreement with previous analysis the surplus is due to the quadrupole terms of the photon-electron interaction. We present the characteristic angular distribution for the "back-to-back" electron emission. The confirmation of the quasifree mechanism opens a new area of exiting experiments, which are expected to increase our understanding of the electron dynamics and of the bound states structure. The results of this Letter along with the recent experiments open a new field for studies of two-electron ionization not only by photons but by other projectiles, e.g. by fast electrons or heavy ions.Comment: 10 pages, 2 figure

    Analytic calculation of energies and wave functions of the quartic and pure quartic oscillators

    Full text link
    Ground state energies and wave functions of quartic and pure quartic oscillators are calculated by first casting the Schr\"{o}dinger equation into a nonlinear Riccati form and then solving that nonlinear equation analytically in the first iteration of the quasilinearization method (QLM). In the QLM the nonlinear differential equation is solved by approximating the nonlinear terms by a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. Our explicit analytic results are then compared with exact numerical and also with WKB solutions and it is found that our ground state wave functions, using a range of small to large coupling constants, yield a precision of between 0.1 and 1 percent and are more accurate than WKB solutions by two to three orders of magnitude. In addition, our QLM wave functions are devoid of unphysical turning point singularities and thus allow one to make analytical estimates of how variation of the oscillator parameters affects physical systems that can be described by the quartic and pure quartic oscillators.Comment: 8 pages, 12 figures, 1 tabl

    Angular distributions of secondary electrons in fast particle-atom scattering

    Full text link
    We present the angular distribution of electrons knocked out from an atom in a fast charge particle collision at small momentum transfer. It is determined not only by dipole but also by quadrupole transitions, the contribution of which can be considerably enhanced as compared to the case of photoionization. There the non-dipole parameters are suppressed as compared to the dipole ones by the parameter \omega R/c << 1, where is the photon energy, R is the ionized shell radius and c is the speed of light. This suppression in fast electron-atom collisions can be considerably reduced: the corresponding expansion parameter \omega R/ \nu << 1 is much bigger than in photoionization, since the speed of the incoming electron is much smaller than c. In formation of the angular distribution it is decisively important that the ionizing field in collision process is longitudinal, while in photoionization - it is transversal. We illustrate the general formulas by concrete results for outer s-, p-, and some nd-subshells of multi-electron noble gas atoms Ar, Kr and Xe, at several transferred momentum values: q=0.0, 0.1, 1.1, 2.1. Even for very small transferred momentum q, i.e. in the so-called optical limit, the deviations from the photoionization case are prominent.Comment: arXiv admin note: substantial text overlap with arXiv:1012.5465 and arXiv:1108.101

    Two-electron photoionization of endohedral atoms

    Full text link
    Using He@C60He@C_{60} as an example, we demonstrate that static potential of the fullerene core essentially alters the cross section of the two-electron ionization differential in one-electron energy dσ++(ω)/dϵd\sigma ^{++}(\omega )/d\epsilon . We found that at high photon energy prominent oscillations appear in it due to reflection of the second, slow electron wave on the C60% C_{60} shell, which "dies out" at relatively high ϵ\epsilon values, of about 2÷\div 3 two-electron ionization potentials. The results were presented for ratios RC60(ω,ϵ)≡dσ++(ω,ϵ)/dσa++(ω,ϵ)R_{C_{60}}(\omega ,\epsilon)\equiv d\sigma ^{++}(\omega ,\epsilon)/d\sigma ^{a++}(\omega,\epsilon), where dσa++(ω,ϵ)/dϵd\sigma ^{a++}(\omega,\epsilon)/d\epsilon is the two-electron differential photoionization cross section. We have calculated the ratio Ri,ful=σi++(ω)/σia++(ω)R_{i,ful}= \sigma_{i} ^{++}(\omega)/\sigma_{i}^{a++}(\omega), that accounts for reflection of both photoelectrons by the C60C_{60} shell. We have calculated also the value of two-electron photoionization cross section σ++(ω)\sigma ^{++}(\omega) and found that this value is close to that of an isolated HeHe atom.Comment: 13 pages, 4 figure
    corecore