3 research outputs found
Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics.
The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive.
IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis
Ceruloplasmin-derived peptide is the strongest regulator of oxidative stress and leukotriene synthesis in neutrophils
Ceruloplasmin, an acute-phase protein, can affect the activity of leukocytes through its various enzymatic activities and protein-protein interactions (with lactoferrin, myeloperoxidase, eosinophil peroxidase, serprocidins, and 5-lipoxygenase (5-LOX), among others). However, the molecular mechanisms of ceruloplasmin activity are not clearly understood. In this study, we tested the ability of two synthetic peptides, RPYLKVFNPR (883â 892) (P1) and RRPYLKVFNPRR (882â 893) (P2), corresponding to the indicated fragments of the ceruloplasmin sequence, to affect neutrophil activation. Leukotriene (LT) B4 is the primary eicosanoid product of polymorphonuclear leukocytes (PMNLs, neutrophils).We studied leukotriene synthesis in PMNLs upon interaction with Salmonella enterica serovar Typhimurium. Priming of neutrophils with phorbol 12-myristate 13-acetate (PMA) elicited the strong regulatory function of P2 peptide as a superoxide formation inducer and leukotriene synthesis inhibitor. Ceruloplasmin-derived P2 peptide appeared to be a strong inhibitor of 5-LOX product synthesis under conditions of oxidative stress.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics
Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive