22 research outputs found

    Limits of Elemental Contrast by Low Energy Electron Point Source Holography

    Full text link
    Motivated by the need for less destructive imaging of nanostructures, we pursue point-source in-line holography (also known as point projection microscopy, or PPM) with very low energy electrons (-100 eV). This technique exploits the recent creation of ultrasharp and robust nanotips, which can field emit electrons from a single atom at their apex, thus creating a path to an extremely coherent source of electrons for holography. Our method has the potential to achieve atom resolved images of nanostructures including biological molecules. We demonstrate a further advantage of PPM emerging from the fact that the very low energy electrons employed experience a large elastic scattering cross section relative to many-keV electrons. Moreover, the variation of scattering factors as a function of atom type allows for enhanced elemental contrast. Low energy electrons arguably offer the further advantage of causing minimum damage to most materials. Model results for small molecules and adatoms on graphene substrates, where very small damage is expected, indicate that a phase contrast is obtainable between elements with significantly different Z-numbers. For example, for typical setup parameters, atoms such as C and P are discernible, while C and N are not.Comment: 15 pages, 5 figure

    Theory of Non-equilibrium Single Electron Dynamics in STM Imaging of Dangling Bonds on a Hydrogenated Silicon Surface

    Full text link
    During fabrication and scanning-tunneling-microscope (STM) imaging of dangling bonds (DBs) on a hydrogenated silicon surface, we consistently observed halo-like features around isolated DBs for specific imaging conditions. These surround individual or small groups of DBs, have abnormally sharp edges, and cannot be explained by conventional STM theory. Here we investigate the nature of these features by a comprehensive 3-dimensional model of elastic and inelastic charge transfer in the vicinity of a DB. Our essential finding is that non-equilibrium current through the localized electronic state of a DB determines the charging state of the DB. This localized charge distorts the electronic bands of the silicon sample, which in turn affects the STM current in that vicinity causing the halo effect. The influence of various imaging conditions and characteristics of the sample on STM images of DBs is also investigated.Comment: 33 pages, 9 figure

    Binary Atomic Silicon Logic

    Full text link
    It has long been anticipated that the ultimate in miniature circuitry will be crafted of single atoms. Despite many advances made in scanned probe microscopy studies of molecules and atoms on surfaces, challenges with patterning and limited thermal stability have remained. Here we make progress toward those challenges and demonstrate rudimentary circuit elements through the patterning of dangling bonds on a hydrogen terminated silicon surface. Dangling bonds sequester electrons both spatially and energetically in the bulk band gap, circumventing short circuiting by the substrate. We deploy paired dangling bonds occupied by one movable electron to form a binary electronic building block. Inspired by earlier quantum dot-based approaches, binary information is encoded in the electron position allowing demonstration of a binary wire and an OR gate

    Characterizing the rate and coherence of single-electron tunneling between two dangling bonds on the surface of silicon

    Full text link
    We devise a scheme to characterize tunneling of an excess electron shared by a pair of tunnel-coupled dangling bonds on a silicon surface -- effectively a two-level system. Theoretical estimates show that the tunneling should be highly coherent but too fast to be measured by any conventional techniques. Our approach is instead to measure the time-averaged charge distribution of our dangling-bond pair by a capacitively coupled atomic-force-microscope tip in the presence of both a surface-parallel electrostatic potential bias between the two dangling bonds and a tunable midinfrared laser capable of inducing Rabi oscillations in the system. With a nonresonant laser, the time-averaged charge distribution in the dangling-bond pair is asymmetric as imposed by the bias. However, as the laser becomes resonant with the coherent electron tunneling in the biased pair the theory predicts that the time-averaged charge distribution becomes symmetric. This resonant symmetry effect should not only reveal the tunneling rate, but also the nature and rate of decoherence of single-electron dynamics in our system

    Single Electron Dynamics of an Atomic Silicon Quantum Dot on the H-Si(100) 2x1 Surface

    Full text link
    Here we report the direct observation of single electron charging of a single atomic Dangling Bond (DB) on the H-Si(100) 2x1 surface. The tip of a scanning tunneling microscope is placed adjacent to the DB to serve as a single electron sensitive charge-detector. Three distinct charge states of the dangling bond, positive, neutral, and negative, are discerned. Charge state probabilities are extracted from the data, and analysis of current traces reveals the characteristic single electron charging dynamics. Filling rates are found to decay exponentially with increasing tip-DB separation, but are not a function of sample bias, while emptying rates show a very weak dependence on tip position, but a strong dependence on sample bias, consistent with the notion of an atomic quantum dot tunnel coupled to the tip on one side and the bulk silicon on the other.Comment: 7 pages, 6 figure

    Dangling-bond charge qubit on a silicon surface

    Full text link
    Two closely spaced dangling bonds positioned on a silicon surface and sharing an excess electron are revealed to be a strong candidate for a charge qubit. Based on our study of the coherent dynamics of this qubit, its extremely high tunneling rate ~ 10^14 1/s greatly exceeds the expected decoherence rates for a silicon-based system, thereby overcoming a critical obstacle of charge qubit quantum computing. We investigate possible configurations of dangling bond qubits for quantum computing devices. A first-order analysis of coherent dynamics of dangling bonds shows promise in this respect.Comment: 17 pages, 3 EPS figures, 1 tabl

    Nanoscale structuring of tungsten tip yields most coherent electron point-source

    Full text link
    This report demonstrates the most spatially-coherent electron source ever reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5 V. The nanotips under study were crafted using a spatially-confined, field-assisted nitrogen etch which removes material from the periphery of the tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio source. The coherence properties are deduced from holographic measurements in a low-energy electron point source microscope with a carbon nanotube bundle as sample. Using the virtual source size and emission current the brightness normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2
    corecore