6 research outputs found

    Discovery of dibenzyl amide derivatives as novel CXCR4 modulators against inflammatory bowel disease

    No full text
    The CXCR4/CXCL12 chemokine axis demonstrates significant potential in the treatment of inflammatory bowel disease (IBD) due to its crucial roles in inflammatory and immune responses. Modulating the CXCR4/CXCL12 pathway can be an effective therapeutic approach to ameliorate the inflammatory state of IBD. In this study, a novel series of meta-dibenzyl amide derivatives were designed and synthesized based on the lead compound AMD3100 and its structurally modified derivatives. Both in vitro and in vivo assays conclusively established that these compounds exhibited potent CXCR4 antagonism and anti-inflammatory activity. Compound 5t demonstrated superior inhibitory rates of binding affinity and chemotaxis of CXCR4+ cells compared to AMD3100. Furthermore, compound 5t notably reduced swelling volume and tissue thickness in the carrageenan-induced mouse paw edema model. Most importantly, in the dextran sodium sulfate (DSS)-induced colitis model, compound 5t significantly mitigated colonic inflammation on both macroscopic and microscopic levels, while suppressing the expression of inflammatory factors and myeloperoxidase (MPO). These findings unequivocally establish the immense potential of compound 5t in the treatment of IBD

    Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq

    No full text
    Circular RNAs (circRNAs), a class of recently discovered non-coding RNAs, play a role in biological and developmental processes. A recent study showed that circRNAs exist in plants and play a role in their environmental stress responses. However, cotton circRNAs and their role in Verticillium wilt response have not been identified up to now. In this study, two CSSLs (chromosome segment substitution lines) of G.barbadense introgressed into G. hirsutum, CSSL-1 and CSSL-4 (a resistant line and a susceptible line to Verticillium wilt, respectively), were inoculated with V. dahliae for RNA-seq library construction and circRNA analysis. A total of 686 novel circRNAs were identified. CSSL-1 and CSSL-4 had similar numbers of circRNAs and shared many circRNAs in common. However, CSSL-4 differentially expressed approximately twice as many circRNAs as CSSL-1, and the differential expression levels of the common circRNAs were generally higher in CSSL-1 than in CSSL-4. Moreover, two C-RRI comparisons, C-RRI-vs-C-RRM and C-RRI-vs-C-RSI, possessed a large proportion (approximately 50%) of the commonly and differentially expressed circRNAs. These results indicate that the differentially expressed circRNAs may play roles in the Verticillium wilt response in cotton. A total of 280 differentially expressed circRNAs were identified. A Gene Ontology analysis showed that most of the ‘stimulus response’ term source genes were NBS family genes, of which most were the source genes from the differentially expressed circRNAs, indicating that NBS genes may play a role in Verticillium wilt resistance and might be regulated by circRNAs in the disease-resistance process in cotton
    corecore