32 research outputs found

    Original Investigation The Role of Sulfadiazine for the Treatment of Refractory Intracranial Infection Dirençli İntrakranial Enfeksiyon Tedavisinde Sülfodiazin'in Rolü

    No full text
    ABSTRACT AIm: Sulfadiazine (SD) is a classic antibiotic for intracranial infection. Due to the medical market policy, SD has not been chosen as an essential drug in all the hospitals in China. However, its therapeutic effect is definite and cannot be substituted. The aim of this study was to evaluate the therapeutic and economic value of SD compared to other popular antibiotics in patients with refractory intracranial infection. mAterIAl and methOds: A retrospective single-center study was performed from January 2011 until December 2012. Thirteen patients diagnosed with refractory intracranial infection were treated with SD. The clinical effects were reviewed. results: Treatment was successful for 12 of the patients (cure rate=92.3%). One patient died of secondary epilepsy, respiratory complications, and multiple organ failure. Only one patient was allergic to SD, and there were no drug-related liver or kidney side effects. COnClusIOn: SD is a safe, effective, and economical antibiotic, and is used by our neurosurgical department. It should be offered as an option for the patients with refractory intracranial infection, especially for patients with lower ability to pay

    Pore Structure Evolution and Seepage Characteristics in Unclassified Tailing Thickening Process

    No full text
    The tailing paste thickening technology was investigated to achieve goaf reduction treatment and tailing resource utilization of metal mines and reach the effect of controlling two hazards with one waste. However, superfine tailing particles could easily form suspended water-locking flocs in the thickening process, which seriously affected the increase in the underflow concentration in the thickener. Undisturbed compression-stage bed samples were extracted using an in situ sampling method through a continuous dynamic thickening experiment. Then, the morphologies and geometrical structures of micropores were analyzed through high-precision computed tomography scanning. Subsequently, the influences of the shear evolution of pore structure and seepage channel on the dewaterability of underflow slurry were explored by combining Avizo software and 3D reconstruction technology. The thickening and dewatering mechanism of underflow slurry was also revealed. Results showed that under the shear action, the flocs were deformed and compacted, forming a high-concentration underflow. On this basis, the original micropores were extruded, deformed and segmented. Moreover, many loose micropores were formed, the connectivity became poor and the total porosity declined. The diameter of the water-conducting channel in the sample was enlarged because of the shear force and the seepage effect improved. The maximum flow velocity inside the pores was 1.537 μm/s, which was 5.49% higher than that under the non-shear state

    Pore Structure Evolution and Seepage Characteristics in Unclassified Tailing Thickening Process

    No full text
    The tailing paste thickening technology was investigated to achieve goaf reduction treatment and tailing resource utilization of metal mines and reach the effect of controlling two hazards with one waste. However, superfine tailing particles could easily form suspended water-locking flocs in the thickening process, which seriously affected the increase in the underflow concentration in the thickener. Undisturbed compression-stage bed samples were extracted using an in situ sampling method through a continuous dynamic thickening experiment. Then, the morphologies and geometrical structures of micropores were analyzed through high-precision computed tomography scanning. Subsequently, the influences of the shear evolution of pore structure and seepage channel on the dewaterability of underflow slurry were explored by combining Avizo software and 3D reconstruction technology. The thickening and dewatering mechanism of underflow slurry was also revealed. Results showed that under the shear action, the flocs were deformed and compacted, forming a high-concentration underflow. On this basis, the original micropores were extruded, deformed and segmented. Moreover, many loose micropores were formed, the connectivity became poor and the total porosity declined. The diameter of the water-conducting channel in the sample was enlarged because of the shear force and the seepage effect improved. The maximum flow velocity inside the pores was 1.537 μm/s, which was 5.49% higher than that under the non-shear state

    Mechanism of Rake Frame Shear Drainage during Gravity Dewatering of Ultrafine Unclassified Tailings for Paste Preparation

    No full text
    To study the mechanism of reverse percolation and drainage of unclassified tailings, improve the disposal concentration of tailings and solve the bottleneck in the development of filling technology, this study performed semi-industrial flocculation and sedimentation tests using macroscopic continuous thickener tests and a self-developed continuous thickener test platform to observe the evolution pattern and formation mechanism of unclassified tailings flocs. Then, in situ sampling was performed on the compressed thickener zone of tailings at the bottom of the bed with the help of industrial CT scanning tests and 3D images. Avizo software was used to establish the seepage channels and construct an evolutionary model to analyze the effect of tailings dewatering and concentration on tailings concentration from a microscopic perspective. The study shows that the distribution of seepage channels is closely related to the height of the bed. As the bed height increases, the bed concentration increases; shear has a significant effect on the water flow inside the pore space. After shear, the water between the sample pores has been discharged. Therefore, the flow rate is relatively slow. Shear produces pressure and tension effects, breaking the static equilibrium between flocs and water forming seepage channels. Shear can effectively break the floc structure and release the water so that the mutual position between flocs and water constantly changes, The concentration of the tailings bed is increased

    Mechanism of Rake Frame Shear Drainage during Gravity Dewatering of Ultrafine Unclassified Tailings for Paste Preparation

    No full text
    To study the mechanism of reverse percolation and drainage of unclassified tailings, improve the disposal concentration of tailings and solve the bottleneck in the development of filling technology, this study performed semi-industrial flocculation and sedimentation tests using macroscopic continuous thickener tests and a self-developed continuous thickener test platform to observe the evolution pattern and formation mechanism of unclassified tailings flocs. Then, in situ sampling was performed on the compressed thickener zone of tailings at the bottom of the bed with the help of industrial CT scanning tests and 3D images. Avizo software was used to establish the seepage channels and construct an evolutionary model to analyze the effect of tailings dewatering and concentration on tailings concentration from a microscopic perspective. The study shows that the distribution of seepage channels is closely related to the height of the bed. As the bed height increases, the bed concentration increases; shear has a significant effect on the water flow inside the pore space. After shear, the water between the sample pores has been discharged. Therefore, the flow rate is relatively slow. Shear produces pressure and tension effects, breaking the static equilibrium between flocs and water forming seepage channels. Shear can effectively break the floc structure and release the water so that the mutual position between flocs and water constantly changes, The concentration of the tailings bed is increased
    corecore