9 research outputs found

    Flaring Behavior of the Quasar 3C~454.3 across the Electromagnetic Spectrum

    Full text link
    We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during pronounced flaring activity in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors >\Gamma>10. The disturbances show a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the RR-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long-lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 Autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and \gamma-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the mm-wave core lies at the end of the jet's acceleration and collimation zone.Comment: 57 pages, 23 figures, 8 tables (submitted to ApJ

    Correlation Analysis of Delays between Variations of Gamma-Ray and Optical Light Curves of Blazars

    No full text
    We have been performing multi-wavelength monitoring of a sample of 纬 -ray blazars since the launch of the Fermi Gamma-ray Space Telescope in 2008. We present 纬 -ray and optical light curves for several quasars and BL Lac objects from the sample to illustrate different patterns of variability. We investigate correlations between 纬 -ray and R-band light curves and, if these are statistically significant, determine delays between variations at the two wavebands. Such time delays can reveal the relative locations of the emitting regions in AGN jets and the origin of the high-energy photons. We present preliminary results of this analysis. Of the 29 blazars with sufficient time coverage, 17 display a significant, singular, correlated time lag when tested over the entire 7-year period. Of these sources, the six that exhibit a consistent time lag across a majority of epochs of high activity have lags of 0 卤 7 days; the 11 without consistency across epochs of high activity generally display longer mean lags, with 纬 -ray leading optical. Eleven sources display no significant singular correlation over either the entire 7-year period or across shorter intervals. No significant difference is apparent between the BL Lac objects and FSRQs. Even after 7 years of monitoring, our correlation analysis remains plagued with uncertainties due to insufficient data
    corecore