5 research outputs found

    Helium Abundance Decrease in ICMEs in 23–24 Solar Cycles

    Full text link
    Based on the OMNI database, the influence of the solar activity decrease in solar cycles (SCs) 23–24 on the behavior of the relative helium ions abundance Nα/Np inside interplanetary coronal mass ejections (ICMEs) is investigated. The dependences of the helium abundance on the plasma and interplanetary magnetic field parameters in the epoch of high solar activity (SCs 21–22) and the epoch of low activity (SCs 23–24) are compared. It is shown that Nα/Np significantly decreased in SCs 23–24 compared to SCs 21–22. The general trends of the dependences have not changed with the change of epoch, but the helium abundance dependences on some parameters (for example, the magnitude of the interplanetary magnetic field) have become weaker in the epoch of low activity than they were in the epoch of high activity. In addition, the dependence of the helium abundance on the distance from spacecraft to the ICME axis was revealed; the clearest dependence is observed in magnetic clouds. The Nα/Np maximum is measured at the minimum distance, which confirms the hypothesis of the existence of a helium-enriched electric current inside an ICME

    The Changes in Multiscale Solar Wind Fluctuations on the Path from the Sun to Earth

    Full text link
    This paper is devoted to the analysis of fluctuations in the solar wind plasma and interplanetary magnetic field parameters observed by Solar Orbiter and WIND spacecraft at different scales ranging from ~103 to 107 km. We consider two long data intervals where the distances between the spacecraft are 0.1 and 0.5 AU, respectively, and they are located close to the Sun–Earth line. Transformation of the fluctuation’s properties on the way from the Sun to Earth is analyzed for different types of solar wind associated with quasi-stationary and transient solar phenomena. The time series of bulk speed are shown to undergo a slight modification, even for large spacecraft separation, while the time series of the interplanetary magnetic field magnitude and components as well as proton density may be transformed even at a relatively short distance. Though the large-scale solar wind structures propagate the distance up to 0.5 AU without significant change, local structures at smaller scales may be modified. The statistical properties of the fluctuations such as relative standard deviation or probability distribution function and its moments remain nearly unchanged at different distances between the two spacecraft and are likely to depend mostly on the type of the solar wind

    Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 5. Influence of the Solar Activity Decrease

    Full text link
    In solar cycles 23–24, solar activity noticeably decreased and, as a result, solar wind parameters decreased. Based on the measurements of the OMNI base for the period 1976–2019, the time profiles of the main solar wind parameters and magnetospheric indices for the main interplanetary drivers of magnetospheric disturbances (solar wind types CIR. Sheath, ejecta and MC) are studied using the double superposed epoch method. The main task of the research is to compare time profiles for the epoch of high solar activity at 21–22 SC and the epoch of low activity at 23–24 SC. The following results were obtained. (1) The analysis did not show a statistically significant change in driver durations during the epoch of minimum. (2) The time profiles of all parameters for all types of SW in the epoch of low activity have the same shape as in the epoch of high activity, but locate at lower values of the parameters. (3) In CIR events, the longitude angle of the solar wind flow has a characteristic S shape; but in the epoch of low activity, it varies in a larger range than in the previous epoch

    Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 5. Influence of the Solar Activity Decrease

    Full text link
    In solar cycles 23–24, solar activity noticeably decreased and, as a result, solar wind parameters decreased. Based on the measurements of the OMNI base for the period 1976–2019, the time profiles of the main solar wind parameters and magnetospheric indices for the main interplanetary drivers of magnetospheric disturbances (solar wind types CIR. Sheath, ejecta and MC) are studied using the double superposed epoch method. The main task of the research is to compare time profiles for the epoch of high solar activity at 21–22 SC and the epoch of low activity at 23–24 SC. The following results were obtained. (1) The analysis did not show a statistically significant change in driver durations during the epoch of minimum. (2) The time profiles of all parameters for all types of SW in the epoch of low activity have the same shape as in the epoch of high activity, but locate at lower values of the parameters. (3) In CIR events, the longitude angle of the solar wind flow has a characteristic S shape; but in the epoch of low activity, it varies in a larger range than in the previous epoch
    corecore