77,613 research outputs found
General covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere
For a particle that is constrained on an ()-dimensional ()
curved surface, the Cartesian components of its momentum in -dimensional
flat space is believed to offer a proper form of momentum for the particle on
the surface, which is called the geometric momentum as it depends on the mean
curvature. Once the momentum is made general covariance, the spin connection
part can be interpreted as a gauge potential. The present study consists in two
parts, the first is a discussion of the general framework for the general
covariant geometric momentum. The second is devoted to a study of a Dirac
fermion on a two-dimensional sphere and we show that there is the generalized
total angular momentum whose three cartesian components form the
algebra, obtained before by consideration of dynamics of the particle, and we
demonstrate that there is no curvature-induced geometric potential for the
fermion.Comment: 8 pages, no figure. Presentation improve
Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case
In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation
- …