28,670 research outputs found

    Dark Matter Blind Spots at One-Loop

    Full text link
    We evaluate the impact of one-loop electroweak corrections to the spin-independent dark matter (DM) scattering cross-section with nucleons (ΟƒSI\sigma_{\rm SI}), in models with a so-called blind spot for direct detection, where the leading-order prediction for the relevant DM coupling to the Higgs boson, and therefore ΟƒSI\sigma_{\rm SI}, are vanishingly small. Adopting a simple illustrative scenario in which the DM state results from the mixing of electroweak singlet and doublet fermions, we compute the relevant higher order corrections to the scalar effective operator contributions to ΟƒSI\sigma_{\rm SI}, stemming from both triangle and box diagrams involving the SM and dark sector fields. It is observed that in a significant region of the singlet-doublet model-space, the one-loop corrections ``unblind'' the tree-level blind spots and lead to detectable SI scattering rates at future multi-ton scale liquid Xenon experiments, with ΟƒSI\sigma_{\rm SI} reaching values up to a few times 10βˆ’47Β cm210^{-47} {~\rm cm}^2, for a weak scale DM with O(1)\mathcal{O}(1) Yukawa couplings. Furthermore, we find that there always exists a new SI blind spot at the next-to-leading order, which is perturbatively shifted from the leading order one in the singlet-doublet mass parameters. For comparison, we also present the tree-level spin-dependent scattering cross-sections near the SI blind-spot region, that could lead to a larger signal. Our results can be mapped to the blind-spot scenario for bino-Higgsino DM in the MSSM, with other sfermions, the heavier Higgs boson, and the wino decoupled.Comment: 20 pages, 5 figures; Minor corrections, references updated, version published in JHE

    A Sparse Graph-Structured Lasso Mixed Model for Genetic Association with Confounding Correction

    Full text link
    While linear mixed model (LMM) has shown a competitive performance in correcting spurious associations raised by population stratification, family structures, and cryptic relatedness, more challenges are still to be addressed regarding the complex structure of genotypic and phenotypic data. For example, geneticists have discovered that some clusters of phenotypes are more co-expressed than others. Hence, a joint analysis that can utilize such relatedness information in a heterogeneous data set is crucial for genetic modeling. We proposed the sparse graph-structured linear mixed model (sGLMM) that can incorporate the relatedness information from traits in a dataset with confounding correction. Our method is capable of uncovering the genetic associations of a large number of phenotypes together while considering the relatedness of these phenotypes. Through extensive simulation experiments, we show that the proposed model outperforms other existing approaches and can model correlation from both population structure and shared signals. Further, we validate the effectiveness of sGLMM in the real-world genomic dataset on two different species from plants and humans. In Arabidopsis thaliana data, sGLMM behaves better than all other baseline models for 63.4% traits. We also discuss the potential causal genetic variation of Human Alzheimer's disease discovered by our model and justify some of the most important genetic loci.Comment: Code available at https://github.com/YeWenting/sGLM
    • …
    corecore