17,374 research outputs found
Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems
We propose a subspace constrained precoding scheme that exploits the spatial
channel correlation structure in massive MIMO cellular systems to fully unleash
the tremendous gain provided by massive antenna array with reduced channel
state information (CSI) signaling overhead. The MIMO precoder at each base
station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace
control matrix. The inner precoder is adaptive to the local CSI at each BS for
spatial multiplexing gain. The Tx subspace control is adaptive to the channel
statistics for inter-cell interference mitigation and Quality of Service (QoS)
optimization. Specifically, the Tx subspace control is formulated as a QoS
optimization problem which involves an SINR chance constraint where the
probability of each user's SINR not satisfying a service requirement must not
exceed a given outage probability. Such chance constraint cannot be handled by
the existing methods due to the two stage precoding structure. To tackle this,
we propose a bi-convex approximation approach, which consists of three key
ingredients: random matrix theory, chance constrained optimization and
semidefinite relaxation. Then we propose an efficient algorithm to find the
optimal solution of the resulting bi-convex approximation problem. Simulations
show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication
- …