18,146 research outputs found

    Optimal Relay Selection with Non-negligible Probing Time

    Full text link
    In this paper an optimal relay selection algorithm with non-negligible probing time is proposed and analyzed for cooperative wireless networks. Relay selection has been introduced to solve the degraded bandwidth efficiency problem in cooperative communication. Yet complete information of relay channels often remain unavailable for complex networks which renders the optimal selection strategies impossible for transmission source without probing the relay channels. Particularly when the number of relay candidate is large, even though probing all relay channels guarantees the finding of the best relays at any time instant, the degradation of bandwidth efficiency due to non-negligible probing times, which was often neglected in past literature, is also significant. In this work, a stopping rule based relay selection strategy is determined for the source node to decide when to stop the probing process and choose one of the probed relays to cooperate with under wireless channels' stochastic uncertainties. This relay selection strategy is further shown to have a simple threshold structure. At the meantime, full diversity order and high bandwidth efficiency can be achieved simultaneously. Both analytical and simulation results are provided to verify the claims.Comment: 8 pages. ICC 201

    Quality Aware Network for Set to Set Recognition

    Full text link
    This paper targets on the problem of set to set recognition, which learns the metric between two image sets. Images in each set belong to the same identity. Since images in a set can be complementary, they hopefully lead to higher accuracy in practical applications. However, the quality of each sample cannot be guaranteed, and samples with poor quality will hurt the metric. In this paper, the quality aware network (QAN) is proposed to confront this problem, where the quality of each sample can be automatically learned although such information is not explicitly provided in the training stage. The network has two branches, where the first branch extracts appearance feature embedding for each sample and the other branch predicts quality score for each sample. Features and quality scores of all samples in a set are then aggregated to generate the final feature embedding. We show that the two branches can be trained in an end-to-end manner given only the set-level identity annotation. Analysis on gradient spread of this mechanism indicates that the quality learned by the network is beneficial to set-to-set recognition and simplifies the distribution that the network needs to fit. Experiments on both face verification and person re-identification show advantages of the proposed QAN. The source code and network structure can be downloaded at https://github.com/sciencefans/Quality-Aware-Network.Comment: Accepted at CVPR 201
    • …
    corecore