356,658 research outputs found
Representations and classification of traveling wave solutions to Sinh-G{\"o}rdon equation
Two concepts named atom solution and combinatory solution are defined. The
classification of all single traveling wave atom solutions to Sinh-G{\"o}rdon
equation is obtained, and qualitative properties of solutions are discussed. In
particular, we point out that some qualitative properties derived intuitively
from dynamic system method aren't true. In final, we prove that our solutions
to Sinh-G{\"o}rdon equation include all solutions obtained in the paper[Fu Z T
et al, Commu. in Theor. Phys.(Beijing) 2006 45 55]. Through an example, we show
how to give some new identities on Jacobian elliptic functions.Comment: 12 pages. accepted by Communications in theoretical physics (Beijing
Quantum Statistical Entropy and Minimal Length of 5D Ricci-flat Black String with Generalized Uncertainty Principle
In this paper, we study the quantum statistical entropy in a 5D Ricci-flat
black string solution, which contains a 4D Schwarzschild-de Sitter black hole
on the brane, by using the improved thin-layer method with the generalized
uncertainty principle. The entropy is the linear sum of the areas of the event
horizon and the cosmological horizon without any cut-off and any constraint on
the bulk's configuration rather than the usual uncertainty principle. The
system's density of state and free energy are convergent in the neighborhood of
horizon. The small-mass approximation is determined by the asymptotic behavior
of metric function near horizons. Meanwhile, we obtain the minimal length of
the position which is restrained by the surface gravities and the
thickness of layer near horizons.Comment: 11pages and this work is dedicated to the memory of Professor Hongya
Li
The classification of traveling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion
Under the traveling wave transformation, Camassa-Holm equation with
dispersion is reduced to an integrable ODE whose general solution can be
obtained using the trick of one-parameter group. Furthermore combining complete
discrimination system for polynomial, the classifications of all single
traveling wave solutions to the Camassa-Holm equation with dispersion is
obtained. In particular, an affine subspace structure in the set of the
solutions of the reduced ODE is obtained. More general, an implicit linear
structure in Camassa-Holm equation with dispersion is found. According to the
linear structure, we obtain the superposition of multi-solutions to
Camassa-Holm equation with dispersion
General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback
In this paper we consider a viscoelastic wave equation with a time-varying
delay term, the coefficient of which is not necessarily positive. By
introducing suitable energy and Lyapunov functionals, under suitable
assumptions, we establish a general energy decay result from which the
exponential and polynomial types of decay are only special cases.Comment: 11 page
The Pseudoscalar Meson and Heavy Vector Meson Scattering Lengths
We have systematically studied the S-wave pseudoscalar meson and heavy vector
meson scattering lengths to the third order with the chiral perturbation
theory, which will be helpful to reveal their strong interaction. For
comparison, we have presented the numerical results of the scattering lengths
(1) in the framework of the heavy meson chiral perturbation theory and (2) in
the framework of the infrared regularization. The chiral expansion converges
well in some channels.Comment: 10 pages, 1 figures, 4 tables. Corrected typos, Improved numerical
results, and More dicussions. Accepted for publication by Phys.Rev.
I=2 Pion scattering length with improved actions on anisotropic lattices
scattering length in the I=2 channel is calculated within quenched
approximation using improved gauge and improved Wilson fermion actions on
anisotropic lattices. The results are extrapolated towards the chiral, infinite
volume and continuum limit. This result improves our previous result on the
scattering length. In the chiral, infinite volume and continuum limit, we
obtain , which is consistent with the result from
Chiral Perturbation Theory, the experiment and results from other lattice
calculations.Comment: 7 pages, 2 figures, typeset wit elsart.cl
- …