139,466 research outputs found

    Topological px+ipyp_{x}+ip_{y} Superfluid Phase of a Dipolar Fermi Gas in a 2D Optical Lattice

    Full text link
    In a dipolar Fermi gas, the anisotropic interaction between electric dipoles can be turned into an effectively attractive interaction in the presence of a rotating electric field. We show that the topological px+ipyp_{x}+ip_{y} superfluid phase can be realized in a single-component dipolar Fermi gas trapped in a 2D square optical lattice with this attractive interaction at low temperatures. The px+ipyp_{x}+ip_{y} superfluid state has potential applications for topological quantum computing. We obtain the phase diagram of this system at zero temperature. In the weak-coupling limit, the p-wave superfluid phase is stable for all filling factors. As the interaction strength increases, it is stable close to filling factors n=0n=0 or n=1n=1, and phase separation takes place in between. When the interaction strength is above a threshold, the system is phase separated for any 0<n<10<n<1. The transition temperature of the px+ipyp_{x}+ip_{y} superfluid state is estimated and the implication for experiments is discussed.Comment: 10 pages, 4 figure

    Phase transition in site-diluted Josephson junction arrays: A numerical study

    Full text link
    We numerically investigate the intriguing effects produced by random percolative disorder in two-dimensional Josephson-junction arrays. By dynamic scaling analysis, we evaluate critical temperatures and critical exponents with high accuracy. It is observed that, with the introduction of site-diluted disorder, the Kosterlitz-Thouless phase transition is eliminated and evolves into a continuous transition with power-law divergent correlation length. Moreover, genuine depinning transition and creep motion are studied, evidence for distinct creep motion types is provided. Our results not only are in good agreement with the recent experimental findings, but also shed some light on the relevant phase transitions.Comment: 7 pages, 8 figures, Phys. Rev. B (in press

    Multiple and virtual photon processes in radiation-induced magnetoresistance oscillations in two-dimensional electron systems

    Full text link
    Recently discovered new structures and zero-resistance states outside the well-known oscillations are demonstrated to arise from multiphoton assisted processes, by a detailed analysis of microwave photoresistance in two-dimensional electron systems under enhanced radiation. The concomitant resistance dropping and peak narrowing observed in the experiments are also reproduced. We show that the radiation-induced suppression of average resistance comes from virtual photon effect and exists throughout the whole magnetic field range.Comment: 4 pages, 2 figures, published versio

    Nonsequential Double Ionization with Polarization-gated Pulses

    Full text link
    We investigate laser-induced nonsequential double ionization by a polarization-gated laser pulse, constructed employing two counter-rotating circularly polarized few cycle pulses with a time delay TdT_{d}. We address the problem within a classical framework, and mimic the behavior of the quantum-mechanical electronic wave packet by means of an ensemble of classical electron trajectories. These trajectories are initially weighted with the quasi-static tunneling rate, and with suitably chosen distributions for the momentum components parallel and perpendicular to the laser-field polarization, in the temporal region for which it is nearly linearly polarized. We show that, if the time delay TdT_{d} is of the order of the pulse length, the electron-momentum distributions, as functions of the parallel momentum components, are highly asymmetric and dependent on the carrier-envelope (CE) phase. As this delay is decreased, this asymmetry gradually vanishes. We explain this behavior in terms of the available phase space, the quasi-static tunneling rate and the recollision rate for the first electron, for different sets of trajectories. Our results show that polarization-gating technique may provide an efficient way to study the NSDI dynamics in the single-cycle limit, without employing few-cycle pulses.Comment: 17 pages, 6 figure

    Magnetoresistance oscillations in two-dimensional electron systems under monochromatic and bichromatic radiations

    Full text link
    The magnetoresistance oscillations in high-mobility two-dimensional electron systems induced by two radiation fields of frequencies 31 GHz and 47 GHz, are analyzed in a wide magnetic-field range down to 100 G, using the balance-equation approach to magnetotransport for high-carrier-density systems. The frequency mixing processes are shown to be important. The predicted peak positions, relative heights, radiation-intensity dependence and their relation with monochromatic resistivities are in good agreement with recent experimental finding [M. A. Zudov {\it et al.} Phys. Rev. Lett. 96, 236804 (2006)].Comment: 4 pages, 3 figure

    Multigrid solver for axisymmetrical 2D fluid equations

    Full text link
    We have developed an efficient algorithm for steady axisymmetrical 2D fluid equations. The algorithm employs multigrid method as well as standard implicit discretization schemes for systems of partial differential equations. Linearity of the multigrid method with respect to the number of grid points allowed us to use 256×256256\times 256 grid, where we could achieve solutions in several minutes. Time limitations due to nonlinearity of the system are partially avoided by using multi level grids(the initial solution on 256×256256\times 256 grid was extrapolated steady solution from 128×128128\times 128 grid which allowed using "long" integration time steps). The fluid solver may be used as the basis for hybrid codes for DC discharges.Comment: preliminary version; presented at 28 ICPIG, July 15-20, 2007, Prague, Czech Republi

    The finite-width Laplace sum rules for 0++0^{++} scalar glueball in instanton liquid model

    Full text link
    In the framework of a semi-classical expansion for quantum chromodynamics in the instanton liquid background, the correlation function of the 0++0^{++} scalar glueball current is given. Besides the pure classical and quantum contributions, the contributions arising from the interactions between the classical instanton fields and quantum gluons are taken into account as well. Instead of the usual zero-width approximation for the resonance, the Brite-Wigner form for the spectral function of the finite-width resonance is adopted. The family of the Laplace sum rules for the scalar glueball in quantum chromodynamics with and without light quarks are studed. A consistency between the subtracted and unsubtracted sum rules are very well justified, and the values of the mass, decay width, and the coupling to the corresponding current for the 0++0^{++} resonance in which the glueball fraction is dominant, are obtained.Comment: 6 figure

    5D5D Solutions to Λ\LambdaCDM Universe Derived from Global Brane Model

    Full text link
    An exact solution of brane universe is studied and the result indicates that Friedmann equations on the brane are modified with an extra term. This term can play the role of dark energy and make the universe accelerate. In order to derive the Λ\LambdaCDM Universe from this global brane model, the new solutions are obtained to describe the 5D5D manifold.Comment: 7 pages, no figure, accepted by MPL

    Confinement induced resonances in anharmonic waveguides

    Full text link
    We develop the theory of anharmonic confinement-induced resonances (ACIR). These are caused by anharmonic excitation of the transverse motion of the center of mass (COM) of two bound atoms in a waveguide. As the transverse confinement becomes anisotropic, we find that the COM resonant solutions split for a quasi-1D system, in agreement with recent experiments. This is not found in harmonic confinement theories. A new resonance appears for repulsive couplings (a3D>0a_{3D}>0) for a quasi-2D system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy corrections within perturbation theory, we find that these ACIR resonances agree extremely well with anomalous 1D and 2D confinement induced resonance positions observed in recent experiments. Multiple even and odd order transverse ACIR resonances are identified in experimental data, including up to N=4 transverse COM quantum numbers.Comment: 16 pages,6 fugure
    • …
    corecore