6,164 research outputs found
A crossover study comparing in-plane and out-of-plane approaches for simulated ultrasound-guided central venous cannulation on phantom models by anaesthesiology trainees
This prospective crossover study compared the incidence of posterior vessel wall puncture between two approaches during ultrasound-guided simulated central venous cannulation by anaesthesiology trainees. Each phantom model, simulating a central vein and artery, was cannulated by 37 anaesthesiology trainees under ultrasound-guidance using the in-plane approach (IPA) and out-of-plane approach (OPA). Total procedural time and the time taken from starting image scanning until commencing puncture, was recorded. The number of attempts required to achieve successful venous cannulation was noted. Finally, the models were examined for posterior venous wall and arterial puncture. Total procedural time was shorter with the OPA (26.5 vs 50.3 seconds, p=0.001). The time taken from starting image scanning until commencing puncture was shorter for the OPA (2.2 vs 12.3 seconds, p<0.0001). The IPA resulted in significantly more attempts for cannulation. Twenty and eleven participants were successful within the first pass using the OPA and IPA, respectively (p=0.034). There was no difference in the incidence of posterior vessel wall puncture between these two techniques. The OPA resulted in less arterial puncture compared to the IPA (2 vs 9, p=0.022). The incidence of posterior vessel wall puncture between the IPA and OPA during ultrasound-guided simulated central venous cannulation by anaesthesiology trainees was comparable
Energy loss in a strongly coupled anisotropic plasma
We study the energy loss of a rotating infinitely massive quark moving, at
constant velocity, through an anisotropic strongly-coupled N=4 plasma from
holography. It is shown that, similar to the isotropic plasma, the energy loss
of the rotating quark is due to either the drag force or radiation with a
continuous crossover from drag-dominated regime to the radiation dominated
regime. We find that the anisotropy has a significant effect on the energy loss
of the heavy quark, specially in the crossover regime. We argue that the energy
loss due to radiation in anisotropic media is less than the isotropic case.
Interestingly this is similar to analogous calculations for the energy loss in
weakly coupled anisotropic plasma.Comment: 26+1 pages, 10 figures, typos fixe
Recommended from our members
Development of a Bonner Sphere neutron spectrometer from a commercial neutron dosimeter
Bonner Spheres have been used widely for the measurement of neutron spectra with neutron energies ranged from thermal up to at least 20 MeV . A Bonner Sphere neutron spectrometer (BSS) was developed by extending a Berthold LB 6411 neutron-dose-rate meter. The BSS consists of a 3He thermal-neutron detector with integrated electronics, a set of eight polyethylene spherical shells and two optional lead shells of various sizes. The response matrix of the BSS was calculated with GEANT4 Monte Carlo simulation. The BSS had a calibration uncertainty of ± 8.6% and a detector background rate of (1.57 ± 0.04) × 10−3 s−1. A spectral unfolding code NSUGA was developed. The NSUGA code utilizes genetic algorithms and has been shown to perform well in the absence of a priori information.postprin
It's all in the details: methods in breast development and cancer
The inaugural European Network for Breast Development and Cancer (ENBDC) meeting on 'Methods in Mammary Gland Development and Cancer' was held in Weggis, Switzerland last April. The goal was to discuss the details of techniques used to study mammary gland biology and tumourigenesis. Highlights of this meeting included the use of four-colour fluorescence for protein co-localisation in tissue microarrays, genome analysis at single cell resolution, technical issues in the isolation of normal and tumour stem cells, and the use of mouse models and mammary gland transplantations to elucidate gene function in mammary development and to study drug resistance in breast cancer
Back reaction effects on the dynamics of heavy probes in heavy quark cloud
We holographically study the effect of back reaction on the hydrodynamical
properties of strongly coupled super Yang-Mills (SYM) thermal
plasma. The back reaction we consider arises from the presence of static heavy
quarks uniformly distributed over SYM plasma. In order to
study the hydrodynamical properties, we use heavy quark as well as heavy
quark-antiquark bound state as probes and compute the jet quenching parameter,
screening length and binding energy. We also consider the rotational dynamics
of heavy probe quark in the back-reacted plasma and analyse associated energy
loss. We observe that the presence of back reaction enhances the energy-loss in
the thermal plasma. Finally, we show that there is no effect of angular drag on
the rotational motion of quark-antiquark bound state probing the back reacted
thermal plasma.Comment: 29 pages, 21 figure
Association of Over-The-Counter Pharmaceutical Sales with Influenza-Like-Illnesses to Patient Volume in an Urgent Care Setting
We studied the association between OTC pharmaceutical sales and volume of patients with influenza-like-illnesses (ILI) at an urgent care center over one year. OTC pharmaceutical sales explain 36% of the variance in the patient volume, and each standard deviation increase is associated with 4.7 more patient visits to the urgent care center (p<0.0001). Cross-correlation function analysis demonstrated that OTC pharmaceutical sales are significantly associated with patient volume during non-flu season (p<0.0001), but only the sales of cough and cold (p<0.0001) and thermometer (p<0.0001) categories were significant during flu season with a lag of two and one days, respectively. Our study is the first study to demonstrate and measure the relationship between OTC pharmaceutical sales and urgent care center patient volume, and presents strong evidence that OTC sales predict urgent care center patient volume year round. © 2013 Liu et al
Drag force in a strongly coupled anisotropic plasma
We calculate the drag force experienced by an infinitely massive quark
propagating at constant velocity through an anisotropic, strongly coupled N=4
plasma by means of its gravity dual. We find that the gluon cloud trailing
behind the quark is generally misaligned with the quark velocity, and that the
latter is also misaligned with the force. The drag coefficient can be
larger or smaller than the corresponding isotropic value depending on the
velocity and the direction of motion. In the ultra-relativistic limit we find
that generically . We discuss the conditions under which this
behaviour may extend to more general situations.Comment: 25 pages, 13 figures; v2: minor changes, added reference
Metabolic effects of diets differing in glycaemic index depend on age and endogenous GIP
Aims/hypothesis
High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling.
Methods
Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr −/− ) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20–26 weeks of intervention, n = 8–10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake.
Results
Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr −/− vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity.
Conclusions/interpretation
The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial
Quarkonium dissociation by anisotropy
We compute the screening length for quarkonium mesons moving through an
anisotropic, strongly coupled N=4 super Yang-Mills plasma by means of its
gravity dual. We present the results for arbitrary velocities and orientations
of the mesons, as well as for arbitrary values of the anisotropy. The
anisotropic screening length can be larger or smaller than the isotropic one,
and this depends on whether the comparison is made at equal temperatures or at
equal entropy densities. For generic motion we find that: (i) mesons dissociate
above a certain critical value of the anisotropy, even at zero temperature;
(ii) there is a limiting velocity for mesons in the plasma, even at zero
temperature; (iii) in the ultra-relativistic limit the screening length scales
as with \epsilon =1/2, in contrast with the isotropic result
\epsilon =1/4.Comment: 39 pages, 26 figures; v2: minor changes, added reference
- …