1,373 research outputs found
Cosmological Simulation for Fuzzy Dark Matter Model
Fuzzy Dark Matter (FDM), motivated by string theory, has recently become a
hot candidate for dark matter. The rest mass of FDM is believed to be eV and the corresponding de-Broglie wave length is kpc.
Therefore, the quantum effect of FDM plays an important role in structure
formation. In order to study the cosmological structure formation in FDM model,
several simulation techniques have been introduced. We review the current
status and challenges in the cosmological simulation for the FDM model in this
paper.Comment: 10 pages, 2 tables, published on Front. Astron. Space Sci. under the
topic: Dark Matter - Where is it? What is it
Bayesian Biclustering of Gene Expression Data
Background: Biclustering of gene expression data searches for local patterns of gene expression. A bicluster (or a two-way cluster) is defined as a set of genes whose expression profiles are mutually similar within a subset of experimental conditions/samples. Although several biclustering algorithms have been studied, few are based on rigorous statistical models.
Results: We developed a Bayesian biclustering model (BBC), and implemented a Gibbs sampling procedure for its statistical inference. We showed that Bayesian biclustering model can correctly identify multiple clusters of gene expression data. Using simulated data both from the model and with realistic characters, we demonstrated the BBC algorithm outperforms other methods in both robustness and accuracy. We also showed that the model is stable for two normalization methods, the interquartile range normalization and the smallest quartile range normalization. Applying the BBC algorithm to the yeast expression data, we observed that majority of the biclusters we found are supported by significant biological evidences, such as enrichments of gene functions and transcription factor binding sites in the corresponding promoter sequences. Conclusions: The BBC algorithm is shown to be a robust model-based biclustering method that can discover biologically significant gene-condition clusters in microarray data. The BBC model can easily handle missing data via Monte Carlo imputation and has the potential to be extended to integrated study of gene transcription networks.Statistic
Multi-scale Population and Mobility Estimation with Geo-tagged Tweets
Recent outbreaks of Ebola and Dengue viruses have again elevated the
significance of the capability to quickly predict disease spread in an emergent
situation. However, existing approaches usually rely heavily on the
time-consuming census processes, or the privacy-sensitive call logs, leading to
their unresponsive nature when facing the abruptly changing dynamics in the
event of an outbreak. In this paper we study the feasibility of using
large-scale Twitter data as a proxy of human mobility to model and predict
disease spread. We report that for Australia, Twitter users' distribution
correlates well the census-based population distribution, and that the Twitter
users' travel patterns appear to loosely follow the gravity law at multiple
scales of geographic distances, i.e. national level, state level and
metropolitan level. The radiation model is also evaluated on this dataset
though it has shown inferior fitness as a result of Australia's sparse
population and large landmass. The outcomes of the study form the cornerstones
for future work towards a model-based, responsive prediction method from
Twitter data for disease spread.Comment: 1st International Workshop on Big Data Analytics for Biosecurity
(BioBAD2015), 4 page
Physical Primitive Decomposition
Objects are made of parts, each with distinct geometry, physics,
functionality, and affordances. Developing such a distributed, physical,
interpretable representation of objects will facilitate intelligent agents to
better explore and interact with the world. In this paper, we study physical
primitive decomposition---understanding an object through its components, each
with physical and geometric attributes. As annotated data for object parts and
physics are rare, we propose a novel formulation that learns physical
primitives by explaining both an object's appearance and its behaviors in
physical events. Our model performs well on block towers and tools in both
synthetic and real scenarios; we also demonstrate that visual and physical
observations often provide complementary signals. We further present ablation
and behavioral studies to better understand our model and contrast it with
human performance.Comment: ECCV 2018. Project page: http://ppd.csail.mit.edu
- …