12,658 research outputs found

    Supergravities with Minkowski x Sphere Vacua

    Get PDF
    Recently the authors have introduced a new gauged supergravity theory with a positive definite potential in D=6, obtained through a generalised Kaluza-Klein reduction from D=7. Of particular interest is the fact that this theory admits certain Minkowski x Sphere vacua. In this paper we extend the previous results by constructing gauged supergravities with positive definitive potentials in diverse dimensions, together with their vacuum solutions. In addition, we prove the supersymmetry of the generalised reduction ansatz. We obtain a supersymmetric solution with no form-field fluxes in the new gauged theory in D=9. This solution may be lifted to D=10, where it acquires an interpretation as a time-dependent supersymmetric cosmological solution supported purely by the dilaton. A further uplift to D=11 yields a solution describing a pp-wave.Comment: Latex, 26 pages, typos correcte

    Variant N=(1,1) Supergravity and (Minkowski)_4 x S^2 Vacua

    Full text link
    We construct the fermionic sector and supersymmetry transformation rules of a variant N=(1,1) supergravity theory obtained by generalized Kaluza-Klein reduction from seven dimensions. We show that this model admits both (Minkowski)_4 x S^2 and (Minkowski)_3 x S^3 vacua. We perform a consistent Kaluza-Klein reduction on S^2 and obtain D=4, N=2 supergravity coupled to a vector multiplet, which can be consistently truncated to give rise to D=4, N=1 supergravity with a chiral multiplet.Comment: Latex, 17 pages. Version appearing in Classical and Quantum Gravit

    Flux transitions in a superconducting ring

    Full text link
    We perform a numeric study of the flux transitions in a superconducting ring at fixed temperature, while the applied field is swept at an ideally slow rate. The current around the ring and its free energy are evaluated. We partially explain some of the known experimental features, and predict a considerably large new feature: in the vicinity of a critical field, giant jumps are expected

    Comparative efficacy and acceptability of psychotherapies for acute anxiety disorders in children and adolescents: Study protocol for a network metaanalysis

    Get PDF
    Introduction: Anxiety disorders are associated with significant public health burden in young individuals. Cognitive-behavioural therapy (CBT) is the most commonly used psychotherapy for anxiety disorders in children and adolescents, but previous reviews were hindered by a limited number of trials with direct comparisons between different psychotherapies and their deliveries. Consequently, the main aim of this research was to investigate the comparative efficacy and acceptability of various types and deliveries of psychotherapies for anxiety disorders in children and adolescents. Methods and analysis: We will systematically search PubMed, EMBASE, Cochrane, Web of Science, PsycINFO, CINAHL, ProQuest Dissertations and LiLACS for randomised controlled trials, regardless of whether participants received blinding or not, published from 1 January 1966 to 30 January 2015 (updated to 1 July 2015), that compared any psychotherapy with either a control condition or an active comparator with different types and/or different delivery formats for the acute treatment of anxiety disorders in children and adolescents. Data extraction, risk of bias and quality assessments will be independently extracted by two reviewers. The primary outcome for efficacy will be mean overall change scores in anxiety symptoms (self-rated or assessor-rated) from baseline to post-treatment between two groups. The acceptability of treatment will be measured as the proportion of patients who discontinued treatment during the acute phase of treatment. We will assess efficacy, based on the standardised mean difference (SMD), and acceptability, based on the OR, using a random-effects network meta-analysis within a Bayesian framework. Subgroup and sensitivity analyses will be conducted to assess the robustness of the findings. Ethics and dissemination: No ethical issues are foreseen. The results will be published in a peer-reviewed journal and will be disseminated electronically and in print. The meta-analysis may be updated to inform and guide management of anxiety in children and adolescents

    Structural Similarity based Anatomical and Functional Brain Imaging Fusion

    Full text link
    Multimodal medical image fusion helps in combining contrasting features from two or more input imaging modalities to represent fused information in a single image. One of the pivotal clinical applications of medical image fusion is the merging of anatomical and functional modalities for fast diagnosis of malignant tissues. In this paper, we present a novel end-to-end unsupervised learning-based Convolutional Neural Network (CNN) for fusing the high and low frequency components of MRI-PET grayscale image pairs, publicly available at ADNI, by exploiting Structural Similarity Index (SSIM) as the loss function during training. We then apply color coding for the visualization of the fused image by quantifying the contribution of each input image in terms of the partial derivatives of the fused image. We find that our fusion and visualization approach results in better visual perception of the fused image, while also comparing favorably to previous methods when applying various quantitative assessment metrics.Comment: Accepted at MICCAI-MBIA 201

    Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3

    Full text link
    Topological insulators represent a new state of quantum matter attractive to both fundamental physics and technological applications such as spintronics and quantum information processing. In a topological insulator, the bulk energy gap is traversed by spin-momentum locked surface states forming an odd number of surface bands that possesses unique electronic properties. However, transport measurements have often been dominated by residual bulk carriers from crystal defects or environmental doping which mask the topological surface contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological insulator system to manipulate bulk conductivity by varying the Bi/Sb composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as topological insulators for the entire composition range by angle resolved photoemission spectroscopy (ARPES) measurements and ab initio calculations. Additionally, we observe a clear ambipolar gating effect similar to that observed in graphene using nanoplates of (BixSb1-x)2Te3 in field-effect-transistor (FET) devices. The manipulation of carrier type and concentration in topological insulator nanostructures demonstrated in this study paves the way for implementation of topological insulators in nanoelectronics and spintronics.Comment: 7 pages, 4 figure

    Evolution of superconductivity in isovalent Te-substituted KxFe2-ySe2 crystals

    Full text link
    We report the evolution of superconductivity and the phase diagram of the KxFe2-ySe2-zTez (z=0-0.6) crystals grown by a simple one-step synthesis. No structural transition is observed in any crystals, while lattice parameters exhibit a systematic expansion with Te content. The Tc exhibits a gradual decrease with increasing Te content from Tconset = 32.9 K at z = 0 to Tconset = 27.9 K at z = 0.5, followed by a sudden suppression of superconductivity at z = 0.6. Upon approaching a Te concentration of 0.6, the shielding volume fraction decreases and eventually drops to zero. Simultaneously, hump positions in r-T curve shift to lower temperatures. These results suggest that isovalent substitution of Te for Se in KxFe2-ySe2 crystals suppresses the superconductivity in this system.Comment: 10 pages, 1 table, 8 figure

    Hamilton-Jacobi Counterterms for Einstein-Gauss-Bonnet Gravity

    Full text link
    The on-shell gravitational action and the boundary stress tensor are essential ingredients in the study of black hole thermodynamics. We employ the Hamilton-Jacobi method to calculate the boundary counterterms necessary to remove the divergences and allow the study of the thermodynamics of Einstein-Gauss-Bonnet black holes.Comment: 21 pages, LaTe
    corecore