12,658 research outputs found
Supergravities with Minkowski x Sphere Vacua
Recently the authors have introduced a new gauged supergravity theory with a
positive definite potential in D=6, obtained through a generalised Kaluza-Klein
reduction from D=7. Of particular interest is the fact that this theory admits
certain Minkowski x Sphere vacua. In this paper we extend the previous results
by constructing gauged supergravities with positive definitive potentials in
diverse dimensions, together with their vacuum solutions. In addition, we prove
the supersymmetry of the generalised reduction ansatz. We obtain a
supersymmetric solution with no form-field fluxes in the new gauged theory in
D=9. This solution may be lifted to D=10, where it acquires an interpretation
as a time-dependent supersymmetric cosmological solution supported purely by
the dilaton. A further uplift to D=11 yields a solution describing a pp-wave.Comment: Latex, 26 pages, typos correcte
Variant N=(1,1) Supergravity and (Minkowski)_4 x S^2 Vacua
We construct the fermionic sector and supersymmetry transformation rules of a
variant N=(1,1) supergravity theory obtained by generalized Kaluza-Klein
reduction from seven dimensions. We show that this model admits both
(Minkowski)_4 x S^2 and (Minkowski)_3 x S^3 vacua. We perform a consistent
Kaluza-Klein reduction on S^2 and obtain D=4, N=2 supergravity coupled to a
vector multiplet, which can be consistently truncated to give rise to D=4, N=1
supergravity with a chiral multiplet.Comment: Latex, 17 pages. Version appearing in Classical and Quantum Gravit
Recommended from our members
Computerized adaptive testing and short form development for child and adolescent oral health patient-reported outcomes measurement.
ObjectivesTo develop computerized adaptive testing (CAT) and short forms of self-report oral health measures that are predictive of both the children's oral health status index (COHSI) and the children's oral health referral recommendation (COHRR) scales, for children and adolescents, ages 8-17.Material and methodsUsing final item calibration parameters (discrimination and difficulty parameters) from the item response theory analysis, we performed post hoc CAT simulation. Items most frequently administered in the simulation were incorporated for possible inclusion in final oral health assessment toolkits, to select the best performing eight items for COHSI and COHRR.ResultsTwo previously identified unidimensional sets of self-report items consisting of 19 items for the COHSI and 22 items for the COHRR were administered through CAT resulting in eight-item short forms for both the COHSI and COHRR. Correlations between the simulated CAT scores and the full item bank representing the latent trait are r = .94 for COHSI and r = .96 for COHRR, respectively, which demonstrated high reliability of the CAT and short form.ConclusionsUsing established rigorous measurement development standards, the CAT and corresponding eight-item short form items for COHSI and COHRR were developed to assess the oral health status of children and adolescents, ages 8-17. These measures demonstrated good psychometric properties and can have clinical utility in oral health screening and evaluation and clinical referral recommendations
Flux transitions in a superconducting ring
We perform a numeric study of the flux transitions in a superconducting ring
at fixed temperature, while the applied field is swept at an ideally slow rate.
The current around the ring and its free energy are evaluated. We partially
explain some of the known experimental features, and predict a considerably
large new feature: in the vicinity of a critical field, giant jumps are
expected
Comparative efficacy and acceptability of psychotherapies for acute anxiety disorders in children and adolescents: Study protocol for a network metaanalysis
Introduction: Anxiety disorders are associated with significant public health burden in young individuals. Cognitive-behavioural therapy (CBT) is the most commonly used psychotherapy for anxiety disorders in children and adolescents, but previous reviews were hindered by a limited number of trials with direct comparisons between different psychotherapies and their deliveries. Consequently, the main aim of this research was to investigate the comparative efficacy and acceptability of various types and deliveries of psychotherapies for anxiety disorders in children and adolescents. Methods and analysis: We will systematically search PubMed, EMBASE, Cochrane, Web of Science, PsycINFO, CINAHL, ProQuest Dissertations and LiLACS for randomised controlled trials, regardless of whether participants received blinding or not, published from 1 January 1966 to 30 January 2015 (updated to 1 July 2015), that compared any psychotherapy with either a control condition or an active comparator with different types and/or different delivery formats for the acute treatment of anxiety disorders in children and adolescents. Data extraction, risk of bias and quality assessments will be independently extracted by two reviewers. The primary outcome for efficacy will be mean overall change scores in anxiety symptoms (self-rated or assessor-rated) from baseline to post-treatment between two groups. The acceptability of treatment will be measured as the proportion of patients who discontinued treatment during the acute phase of treatment. We will assess efficacy, based on the standardised mean difference (SMD), and acceptability, based on the OR, using a random-effects network meta-analysis within a Bayesian framework. Subgroup and sensitivity analyses will be conducted to assess the robustness of the findings. Ethics and dissemination: No ethical issues are foreseen. The results will be published in a peer-reviewed journal and will be disseminated electronically and in print. The meta-analysis may be updated to inform and guide management of anxiety in children and adolescents
Structural Similarity based Anatomical and Functional Brain Imaging Fusion
Multimodal medical image fusion helps in combining contrasting features from
two or more input imaging modalities to represent fused information in a single
image. One of the pivotal clinical applications of medical image fusion is the
merging of anatomical and functional modalities for fast diagnosis of malignant
tissues. In this paper, we present a novel end-to-end unsupervised
learning-based Convolutional Neural Network (CNN) for fusing the high and low
frequency components of MRI-PET grayscale image pairs, publicly available at
ADNI, by exploiting Structural Similarity Index (SSIM) as the loss function
during training. We then apply color coding for the visualization of the fused
image by quantifying the contribution of each input image in terms of the
partial derivatives of the fused image. We find that our fusion and
visualization approach results in better visual perception of the fused image,
while also comparing favorably to previous methods when applying various
quantitative assessment metrics.Comment: Accepted at MICCAI-MBIA 201
Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3
Topological insulators represent a new state of quantum matter attractive to
both fundamental physics and technological applications such as spintronics and
quantum information processing. In a topological insulator, the bulk energy gap
is traversed by spin-momentum locked surface states forming an odd number of
surface bands that possesses unique electronic properties. However, transport
measurements have often been dominated by residual bulk carriers from crystal
defects or environmental doping which mask the topological surface
contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological
insulator system to manipulate bulk conductivity by varying the Bi/Sb
composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as
topological insulators for the entire composition range by angle resolved
photoemission spectroscopy (ARPES) measurements and ab initio calculations.
Additionally, we observe a clear ambipolar gating effect similar to that
observed in graphene using nanoplates of (BixSb1-x)2Te3 in
field-effect-transistor (FET) devices. The manipulation of carrier type and
concentration in topological insulator nanostructures demonstrated in this
study paves the way for implementation of topological insulators in
nanoelectronics and spintronics.Comment: 7 pages, 4 figure
Evolution of superconductivity in isovalent Te-substituted KxFe2-ySe2 crystals
We report the evolution of superconductivity and the phase diagram of the
KxFe2-ySe2-zTez (z=0-0.6) crystals grown by a simple one-step synthesis. No
structural transition is observed in any crystals, while lattice parameters
exhibit a systematic expansion with Te content. The Tc exhibits a gradual
decrease with increasing Te content from Tconset = 32.9 K at z = 0 to Tconset =
27.9 K at z = 0.5, followed by a sudden suppression of superconductivity at z =
0.6. Upon approaching a Te concentration of 0.6, the shielding volume fraction
decreases and eventually drops to zero. Simultaneously, hump positions in r-T
curve shift to lower temperatures. These results suggest that isovalent
substitution of Te for Se in KxFe2-ySe2 crystals suppresses the
superconductivity in this system.Comment: 10 pages, 1 table, 8 figure
Hamilton-Jacobi Counterterms for Einstein-Gauss-Bonnet Gravity
The on-shell gravitational action and the boundary stress tensor are
essential ingredients in the study of black hole thermodynamics. We employ the
Hamilton-Jacobi method to calculate the boundary counterterms necessary to
remove the divergences and allow the study of the thermodynamics of
Einstein-Gauss-Bonnet black holes.Comment: 21 pages, LaTe
- …