10,373 research outputs found
Deep Learning Approaches in Pavement Distress Identification: A Review
This paper presents a comprehensive review of recent advancements in image
processing and deep learning techniques for pavement distress detection and
classification, a critical aspect in modern pavement management systems. The
conventional manual inspection process conducted by human experts is gradually
being superseded by automated solutions, leveraging machine learning and deep
learning algorithms to enhance efficiency and accuracy. The ability of these
algorithms to discern patterns and make predictions based on extensive datasets
has revolutionized the domain of pavement distress identification. The paper
investigates the integration of unmanned aerial vehicles (UAVs) for data
collection, offering unique advantages such as aerial perspectives and
efficient coverage of large areas. By capturing high-resolution images, UAVs
provide valuable data that can be processed using deep learning algorithms to
detect and classify various pavement distresses effectively. While the primary
focus is on 2D image processing, the paper also acknowledges the challenges
associated with 3D images, such as sensor limitations and computational
requirements. Understanding these challenges is crucial for further
advancements in the field. The findings of this review significantly contribute
to the evolution of pavement distress detection, fostering the development of
efficient pavement management systems. As automated approaches continue to
mature, the implementation of deep learning techniques holds great promise in
ensuring safer and more durable road infrastructure for the benefit of society
Physical and virtual water transfers for regional water stress alleviation in China
Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65%at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtualwater flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management
Martian low-temperature alteration materials in shock-melt pockets in Tissint: Constraints on their preservation in shergottite meteorites
We apply an array of in situ analytical techniques, including electron and Raman microscopy, electron and ion probe microanalysis, and laser ablation mass spectrometry to the Tissint martian meteorite in order to find and elucidate a geochemical signature characteristic of low-temperature alteration at or near the martian surface. Tissint contains abundant shock-produced quench-crystallized melt pockets containing water in concentrations ranging from 73 to 1730 ppm; water content is positively correlated with Cl content. The isotopic composition of hydrogen in the shock-produced glass ranges from δD = 2559 to 4422 ‰. Water is derived from two distinct hydrogen reservoirs: the martian near-surface (>500 ‰) and the martian mantle (-100 ‰). In one shock melt pocket comprising texturally homogeneous vesiculated glass, the concentration of H in the shock melt decreases while simultaneously becoming enriched in D, attributable to the preferential loss of H over D to the vesicle while the pocket was still molten. While igneous sulfides are pyrrhotite in composition (Fe_(0.88-0.90)S), the iron to sulfur ratios of spherules in shock melt pockets are elevated, up to Fe_(1.70)S, which we attribute to shock-oxidation of igneous pyrrhotite and the formation of hematite at high temperature. The D- and Cl-enrichment, and higher oxidation of the pockets (as indicated by hematite) support a scenario in which alteration products formed within fractures or void spaces within the rock; the signature of these alteration products is preserved within shock melt (now glass) which formed upon collapse of these fractures and voids during impact shock. Thermal modeling of Tissint shock melt pockets using the HEAT program demonstrates that the shock melt pockets with the greatest potential to preserve a signature of aqueous alteration are small, isolated from other regions of shock melt, vesicle-free, and glassy
A progressive diagonalization scheme for the Rabi Hamiltonian
A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit
interacting with a single-mode radiation field via a dipole interaction, is
proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly
using a progressive scheme that involves a finite set of one variable
polynomial equations. The scheme is especially efficient for lower part of the
spectrum. Some low-lying energy levels of the model with several sets of
parameters are calculated and compared to those provided by the recently
proposed generalized rotating-wave approximation and full matrix
diagonalization.Comment: 8pages, 1 figure, LaTeX. Accepted for publication in J. Phys. B: At.
Mol. Opt. Phy
Trace Element Chemistry of Larkman Nunatuk (LAR) 12011, a New Olivine-Phyric Shergottite
The olivine-phyric shergottite LAR12011 was
found at Larkman Nunatuk during the 2012 ANSMET expedition
[1]. The preliminary analysis of LAR12011 presented in [1] and
oxygen isotope analysis in [2] confirms its Martian origin. This
new sample is paired with LAR06319 [1-3]. Here, we present
petrography and new data on the trace element chemistry of
LAR12011
Gate-Voltage Control of Chemical Potential and Weak Anti-localization in Bismuth Selenide
We report that BiSe thin films can be epitaxially grown on
SrTiO substrates, which allow for very large tunablity in carrier density
with a back-gate. The observed low field magnetoconductivity due to weak
anti-localization (WAL) has a very weak gate-voltage dependence unless the
electron density is reduced to very low values. Such a transition in WAL is
correlated with unusual changes in longitudinal and Hall resistivities. Our
results suggest much suppressed bulk conductivity at large negative
gate-voltages and a possible role of surface states in the WAL phenomena. This
work may pave a way for realizing three-dimensional topological insulators at
ambient conditions.Comment: 5 pages, 4 figures
Recent Advances in Hypertrophic Cardiomyopathy: A System Review
Hypertrophic cardiomyopathy (HCM) is a common genetic cardiovascular disease present in 1 in 500 of the general population, leading to the most frequent cause of sudden death in young people (including trained athletes), heart failure, and stroke. HCM is an autosomal dominant inheritance, which is associated with a large number of mutations in genes encoding proteins of the cardiac sarcomere. Over the last 20 years, the recognition, diagnosis, and treatment of HCM have been improved dramatically. And moreover, recent advancement in genomic medicine, the growing amount of data from genotype-phenotype correlation studies, and new pathways for HCM help the progress in understanding the diagnosis, mechanism, and treatment of HCM. In this chapter, we aim to outline the symptoms, complications, and diagnosis of HCM; update pathogenic variants (including miRNAs); review the treatment of HCM; and discuss current treatment and efforts to study HCM using induced pluripotent stem cell–derived cardiomyocytes and gene editing technologies. The authors ultimately hope that this chapter will stimulate further research, drive novel discoveries, and contribute to the precision medicine in diagnosis and therapy for HCM
Decreased TRPM7 inhibits activities and induces apotosis of bladder cancer cells via ERK1/2 pathway
published_or_final_versio
Topological edge and corner states in Bi fractals on InSb
Topological materials hosting metallic edges characterized by integer
quantized conductivity in an insulating bulk have revolutionized our
understanding of transport in matter. The topological protection of these edge
states is based on symmetries and dimensionality. However, only
integer-dimensional models have been classified, and the interplay of topology
and fractals, which may have a non-integer dimension, remained largely
unexplored. Quantum fractals have recently been engineered in metamaterials,
but up to present no topological states were unveiled in fractals realized in
real materials. Here, we show theoretically and experimentally that topological
edge and corner modes arise in fractals formed upon depositing thin layers of
bismuth on an indium antimonide substrate. Scanning tunneling microscopy
reveals the appearance of (nearly) zero-energy modes at the corners of
Sierpi\'nski triangles, as well as the formation of outer and inner edge modes
at higher energies. Unexpectedly, a robust and sharp depleted mode appears at
the outer and inner edges of the samples at negative bias voltages. The
experimental findings are corroborated by theoretical calculations in the
framework of a continuum muffin-tin and a lattice tight-binding model. The
stability of the topological features to the introduction of a Rashba
spin-orbit coupling and disorder is discussed. This work opens the perspective
to novel electronics in real materials at non-integer dimensions with robust
and protected topological states.Comment: Main manuscript 14 pages, supplementary material 34 page
- …