76 research outputs found

    加熱・急冷および選択粉砕による自動車排ガス浄化触媒からの白金族元素濃縮

    Get PDF
    早大学位記番号:新6808早稲田大

    Research on the Vibration Damping Performance of a Novel Single-Side Coupling Hydro-Pneumatic Suspension

    Get PDF
    A mine dump truck is exposed to heavy load and harsh working environment. When the truck passes over the road bumps, it will cause the body to tilt and the tires to "jump off the ground" (JOTG), which will affect the stability and safety of the truck, and will cause impact damage to the body and suspension system. To avoid this situation, a kind of Novel Single-side Coupling Hydro-pneumatic Suspension (NSCHs) is presented. NSCHs consists of two cylinders in parallel, which are connected to the accumulator by rubber pipes and mounted on the same side of the dump truck. Theoretical analysis and experimental research were respectively carried out under the road and loading experimental condition. The experimental results show that compared to the conventional single cylinder hydro-pneumatic suspension, under the loading experiment condition, the maximum overshoot pressure of the NSCHs was reduced by 0.4 MPa and the impact oscillation time was shortened by 4.13 s, which plays the effective role in reducing vibration and absorbing energy. Further, it is found that the two cylinders are coupled during the working process, and the NSCHs system can achieve uniform loading and displacement compensation, thus the novel dump truck can avoid the occurrence of the JOTG phenomenon

    Two-stream Multi-level Dynamic Point Transformer for Two-person Interaction Recognition

    Full text link
    As a fundamental aspect of human life, two-person interactions contain meaningful information about people's activities, relationships, and social settings. Human action recognition serves as the foundation for many smart applications, with a strong focus on personal privacy. However, recognizing two-person interactions poses more challenges due to increased body occlusion and overlap compared to single-person actions. In this paper, we propose a point cloud-based network named Two-stream Multi-level Dynamic Point Transformer for two-person interaction recognition. Our model addresses the challenge of recognizing two-person interactions by incorporating local-region spatial information, appearance information, and motion information. To achieve this, we introduce a designed frame selection method named Interval Frame Sampling (IFS), which efficiently samples frames from videos, capturing more discriminative information in a relatively short processing time. Subsequently, a frame features learning module and a two-stream multi-level feature aggregation module extract global and partial features from the sampled frames, effectively representing the local-region spatial information, appearance information, and motion information related to the interactions. Finally, we apply a transformer to perform self-attention on the learned features for the final classification. Extensive experiments are conducted on two large-scale datasets, the interaction subsets of NTU RGB+D 60 and NTU RGB+D 120. The results show that our network outperforms state-of-the-art approaches across all standard evaluation settings

    Evaluating essential processes and forecast requirements for meteotsunami-induced coastal flooding

    Get PDF
    Meteotsunamis pose a unique threat to coastal communities and often lead to damage of coastal infrastructure, deluge of nearby property, and loss of life and injury. The Great Lakes are a known hot-spot of meteotsunami activity and serve as an important region for investigation of essential hydrodynamic processes and model forecast requirements in meteotsunami-induced coastal flooding. For this work, we developed an advanced hydrodynamic model and evaluate key model attributes and dynamic processes, including: (1) coastal model grid resolution and wetting and drying process in low-lying zones, (2) coastal infrastructure, including breakwaters and associated submerging and overtopping processes, (3) annual/seasonal (ambient) water level change, and (4) wind wave-current coupling. Numerical experiments are designed to evaluate the importance of these attributes to meteotsunami modeling, including a “representative storm” scenario in the context of regional climate change in which a meteotsunami wave is generated under high ambient lake-level conditions with a preferable wind direction and speed for wind-wave growth. Results demonstrate that accurate representation of coastal topography and fully resolving associated hydrodynamic processes are critical to forecasting the realistic hazards associated with meteotsunami events. As most of existing coastal forecast systems generally do not resolve many of these features due to insufficient model grid resolution or lack of essential model attributes, this work shows that calibrating or assessing existing forecast models against coastal water level gauges alone may result in underestimating the meteotsunami hazard, particularly when gauging stations are sparse and located behind harbor breakwaters or inside estuaries, which represent dampened or otherwise unrepresentative pictures of meteotsunami intensity. This work is the first hydrodynamic modeling of meteotsunami-induced coastal flooding for the Great Lakes, and serves as a template to guide where resources may be most beneficial in forecast system development and implementation

    Laboratory Study of the Effects of Flexible Vegetation on Solute Diffusion in Unidirectional Flow

    Get PDF
    Background Flexible vegetation is an important part of the riverine ecosystem, which can reduce flow velocity, change turbulence structure, and affect the processes of solute transport. Compared with the flow with rigid vegetation, which has been reported in many previous studies, bending of flexible vegetation increases the complexity of the flow-vegetation-solute interactions. In this study, laboratory experiments are carried out to investigate the influence of flexible vegetation on solute transport, and methods for estimating the lateral and longitudinal diffusion coefficients in the rigid vegetated flow are examined for their applications to the flow with flexible vegetation. Results The experimental observations find that vegetation can significantly reduce flow velocity, and the Manning coefficient increases with increasing vegetation density and decreases with inflow discharge. Under all the cases, the vertical peak of the solute concentration moves towards the bottom bed along the flow, and the values of vertical peak concentration longitudinally decreases from the injection point. The lateral diffusion coefficients Dy increase with vegetation density, while the longitudinal diffusion coefficients DL are opposite. Both Dy and DL increase with the inflow discharge. To estimate the Dy and DL in the flow with flexible vegetation, an effective submerged vegetation height considering vegetation bending is incorporated in the methods proposed for flow with rigid vegetation (Lou et al. Environ Sci Eur 32:15, 2020). The modified approach can well predict the diffusion coefficients in the experiments with the relative errors in the range of 5%-12%. Conclusions The methods proposed in this study can be used to estimate the lateral and longitudinal diffusion coefficients in flows through both rigid and flexible vegetations using the effective submerged vegetation height

    Integrating Deep Learning and Hydrodynamic Modeling to Improve the Great Lakes Forecast

    Get PDF
    The Laurentian Great Lakes, one of the world’s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, trained with the limited data from hypothetical monitoring networks, can provide consistent and robust performance. The LSTM prediction captured the LST spatiotemporal variabilities across the five Great Lakes well, suggesting an effective and efficient way for monitoring network design in assisting the ML-based forecast. Furthermore, we employed an explainable artificial intelligence (XAI) technique named SHapley Additive exPlanations (SHAP) to uncover how the features impact the LSTM prediction. Our XAI analysis shows air temperature is the most influential feature for predicting LST in the trained LSTM. The relatively large bias in the LSTM prediction during the spring and fall was associated with substantial heterogeneity of air temperature during the two seasons. In contrast, the physics-based hydrodynamic model performed better in spring and fall yet exhibited relatively large biases during the summer stratification period. Finally, we developed a statistical integration of the hydrodynamic modeling and deep learning results based on the Best Linear Unbiased Estimator (BLUE). The integration further enhanced prediction accuracy, suggesting its potential for next-generation Great Lakes forecast systems

    Integrating Deep Learning and Hydrodynamic Modeling to Improve the Great Lakes Forecast

    Get PDF
    The Laurentian Great Lakes, one of the world’s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, trained with the limited data from hypothetical monitoring networks, can provide consistent and robust performance. The LSTM prediction captured the LST spatiotemporal variabilities across the five Great Lakes well, suggesting an effective and efficient way for monitoring network design in assisting the ML-based forecast. Furthermore, we employed an explainable artificial intelligence (XAI) technique named SHapley Additive exPlanations (SHAP) to uncover how the features impact the LSTM prediction. Our XAI analysis shows air temperature is the most influential feature for predicting LST in the trained LSTM. The relatively large bias in the LSTM prediction during the spring and fall was associated with substantial heterogeneity of air temperature during the two seasons. In contrast, the physics-based hydrodynamic model performed better in spring and fall yet exhibited relatively large biases during the summer stratification period. Finally, we developed a statistical integration of the hydrodynamic modeling and deep learning results based on the Best Linear Unbiased Estimator (BLUE). The integration further enhanced prediction accuracy, suggesting its potential for next-generation Great Lakes forecast systems

    Heavy Metal Distribution and Groundwater Quality Assessment for a Coastal Area on a Chinese Island

    Get PDF
    Chongming Island is located in the lower Yangtze Estuary in China. Due to the Leachate from a refuse landfill and the hydrodynamics of the Yangtze Estuary, the groundwater environment is particularly complicated on Chongming Island. Field observations were carried out around the landfill disposal site. The groundwater table, temperature, pH, salinity, and dissolved oxygen were measured in the field by portable equipment, and 192 water samples were collected at eight groundwater sites and one surface water site. Through laboratory analysis we found the highest measured concentration of Cr to be 54.07 μg/L, and the measured concentration of Zn was in the range of 8 1.1 μg/L to more than 200 μg/L, which were both higher than their background values. Strong correlations were found between the heavy metal (Cr, Ni, Cu) concentrations and physico-chemical characteristics (salinity and pH), which indicated that both the landfill and the tides played an important role in the distribution of heavy metal concentrations. Both the BM and PoS Indices were greater than their critical values near the disposal site, indicating groundwater pollution by heavy metals. We show that Cr and Ni are the major heavy metals causing groundwater contamination in the study region

    Numerical Study of Sediment Suspension Affected By Rigid Cylinders Under Unidirectional and Combined Wave-Current Flows

    Get PDF
    Sediment transport modeling for flows with cylinders is very challenging owing to the complicated flow–cylinder–sediment interactions, especially under the combined wave-current flows. In this paper, an improved formulation for incipient sediment suspension considering the effect of cylinder density (i.e., solid volume fraction) is employed to simulate the bottom sediment flux in the flow with cylinders. The proposed model is calibrated and validated using laboratory measurements under unidirectional and combined wave-current flows in previous studies. It is proved that the effects of cylinders on sediment suspension can be accounted for through a modified critical Shields number, and the proposed model is capable of simulating sediment suspension under both unidirectional and combined wave–current flows reasonably well with the average the coefficients of determination and model skills greater than 0.8 and 0.64

    Antibacterial hemostatic dressings with nanoporous bioglass containing silver

    Get PDF
    Nanoporous bioglass containing silver (n-BGS) was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m2/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag) had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS’s clotting ability significantly decreased prothrombin time (PT) and activated partial thromboplastin time (APTT), indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time) compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage
    corecore