140 research outputs found

    Knowledge landscape of tumor-associated macrophage research: A bibliometric and visual analysis

    Get PDF
    Background and aimsTumor-associated macrophage (TAM) is a highly abundant immune population in tumor microenvironment, which plays an important role in tumor growth and progression. The aim of our study was to explore the development trends and research hotspots of TAM by bibliometric method.MethodsThe publications related to TAM were obtained from the Web of Science Core Collection database. Bibliometric analysis and visualization were conducted using VOSviewer, CiteSpace and R software.ResultsA total of 6,405 articles published between 2001 and 2021 were included. The United States and China received the most citations, whereas the University of Milan, the university of California San Francisco and Sun Yat-sen University were the main research institutions. Mantovani, Alberto from Humanitas University was the most productive authors with the most citations. Cancer Research published the most articles and received the most co-citations. Activation, angiogenesis, breast cancer, NF-κB and endothelial growth factor were important keywords in TAM research. Among them, PD-1/L1, nanoparticle, PI3Kγ, resistance and immune microenvironment have become the focus of attention in more recent research.ConclusionsThe research on TAM is rapidly evolving with active cooperation worldwide. Anticancer therapy targeting TAM is emerging and promising area of future research, especially in translational application. This may provide guidance and new insights for further research in the field of TAM

    Mapping the Intel Last-Level Cache

    Get PDF
    Modern Intel processors use an undisclosed hash function to map memory lines into last-level cache slices. In this work we develop a technique for reverse-engineering the hash function. We apply the technique to a 6-core Intel processor and demonstrate that knowledge of this hash function can facilitate cache-based side channel attacks, reducing the amount of work required for profiling the cache by three orders of magnitude. We also show how using the hash function we can double the number of colours used for page-colouring techniques

    Serine-threonine kinases and transcription factors active in signal transduction are detected at high levels of phosphorylation during mitosis in preimplantation embryos and trophoblast stem cells

    Get PDF
    Serine-threonine kinases and transcription factors play important roles in the G1-S phase progression of the cell cycle. Assays that use quantitative fluorescence by immunocytochemical means, or that measure band strength during Western blot analysis, may have confused interpretations if the intention is to measure G1-S phase commitment of a small subpopulation of phosphorylated proteins, when a larger conversion of the same population of proteins can occur during late G2 and M phases. In mouse trophoblast stem cells (TSC), a human placental cell line (HTR), and/or mouse preimplantation embryos, 8/19 ser- ine-threonine and tyrosine kinases, 3/8 transcription factors, and 8/14 phospho substrate and miscellaneous proteins were phosphorylated at higher levels in M phase than in interphase. Most phosphoproteins appeared to associate with the spindle complex during M phase, but one (p38MAPK) associated with the spindle pole and five (Cdx2, MEK1, 2, p27, and RSK1) associated with the DNA. Phosphorylation was detected throughout apparent metaphase, anaphase and telophase for some proteins, or for only one of these segments for others. The phosphorylation was from 2.1- to 6.2-fold higher during M phase compared with interphase. These data suggest that, when planning and interpreting quantitative data and perturbation experiments, consideration must be given to the role of serine-threonine kinases and transcription factors during decision making in M phase as well as in G1-S phase
    corecore