120 research outputs found

    Dynamical Monte Carlo investigation of spin reversals and nonequilibrium magnetization of single-molecule magnets

    Full text link
    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDI). We calculate spin reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the presence of sweeping magnetic fields. We do systematical DMC simulations for Mn12_{12} systems with various temperatures and sweeping rates. Our simulations produce clear step structures in low-temperature magnetization curves, and our results show that the thermally activated barrier hurdling becomes dominating at high temperature near 3K and the thermal-assisted tunnelings play important roles at intermediate temperature. These are consistent with corresponding experimental results on good Mn12_{12} samples (with less disorders) in the presence of little misalignments between the easy axis and applied magnetic fields, and therefore our magnetization curves are satisfactory. Furthermore, our DMC results show that the MDI, with the thermal effects, have important effects on the LZ tunneling processes, but both the MDI and the LZ tunneling give place to the thermal-activated barrier hurdling effect in determining the magnetization curves when the temperature is near 3K. This DMC approach can be applicable to other SMM systems, and could be used to study other properties of SMM systems.Comment: Phys Rev B, accepted; 10 pages, 6 figure

    Improved half-metallic ferromagnetism of transition-metal pnictides and chalcogenides calculated with a modified Becke-Johnson exchange potential

    Full text link
    We use a density-functional-theory (DFT) approach with a modified Becke-Johnson exchange plus local density approximation (LDA) correlation potential (mBJLDA) [semi-local, orbital-independent, producing accurate semiconductor gaps. see F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)] to investigate the electronic structures of zincblende transition-metal (TM) pnictides and chalcogenides akin to semiconductors. Our results show that this potential does not yield visible changes in wide TM d-t_{2g} bands near the Fermi level, but makes the occupied minority-spin p-bands lower by 0.25~0.35 eV and the empty (or nearly empty) minority-spin e_g bands across the Fermi level higher by 0.33~0.73 eV. Consequently, mBJLDA, having no atom-dependent parameters, makes zincblende MnAs become a truly half-metallic (HM) ferromagnet with a HM gap (the key parameter) 0.318eV, being consistent with experiment. For zincblende MnSb, CrAs, CrSb, CrSe, or CrTe, the HM gap is enhanced by 19~56% compared to LDA and generalized gradient approximation results. The improved HM ferromagnetism can be understood in terms of the mBJLDA-enhanced spin exchange splitting.Comment: 6 pages, 5 figure
    • …
    corecore