39 research outputs found

    Analyzing the Marketing Strategies of Enterprises in the New Media Environment

    Get PDF
    In the management of enterprises, marketing, as a powerful tool for brand building and gaining competitive advantages, plays a crucial role in achieving long-term development. Nowadays, with the emergence of various new media, traditional marketing has become difficult to adapt to the requirements of the times. This requires enterprises to establish a new media marketing concept and actively explore marketing strategies centered on new media according to the actual situation. Only in this way can the effectiveness of market marketing be improved and enterprises stand out in the fierce market competition. Starting from the characteristics of enterprise marketing in the new media environment, this article focuses on exploring how enterprises can effectively innovate marketing strategies in the new media environment, hoping to have reference significance

    High-performance III-V quantum structures and devices grown on Si substrates

    Get PDF
    III-V material laser monolithically grown on silicon (Si) substrate is urgently required to achieve low-cost and high-yield Si photonics. Due to the material dissimilarity between III-V component and Si, however, several challenges, such as dislocations and antiphase domains, remain to be solved during the epitaxial growth. In this regard, quantum dot (QD) laser diodes have been demonstrated with impressive characteristics of temperature insensitive, low power consumption and defects tolerance, and thus QD material is regards as an ideal material for laser directly grown on Si substrate. In this thesis, both QD laser diodes with 1.3 ”m wavelength and quantum dot cascade laser with mid-infrared wavelength have been investigated. To understand the unique advantages of QD material, the comparison of QD and quantum well (QW) materials and devices grown on Si substrate is carried out in chapter 3. Based on identical fabrication and growth conditions, Si-based QW devices are unable to operate at room temperature, while the room-temperature Si-based QD is obtained with threshold current density of 160 A/cm2 and single-facet output power of >100 mW under continuous wave (c.w.) injection current driving. Besides, Si-based QD laser also shows remarkable temperature stability which the c.w. operation temperature reaches 66 ℃. The results point out that QD material has great potential in monolithic growth of III-V on Si for silicon photonics. Then, a novel approach of all-MBE grown QD laser on Si substrate is reported in chapter 4, with the optimization of buffer layer. The all-MBE grown QD laser on on-axis Si substrate with maximum operation temperature of 130 oC is achieved by utilizing thin Germanium (Ge) buffer. The mid-infrared silicon photonics has wide applications and market, but the lack of Si-based mid-infrared laser is a subsistent problem. Because the bandgap of conventional QW and QD materials is impossible to match the wavelength in mid-infrared range (3 ”m to 20 ”m), the Si-based quantum cascade laser (QCL) devices is regarded as an effective method to meet the requirement. Therefore, the high-performance QCL is firstly explored in chapter 5, and then, several methods in fabrication process are researched to enhance the performance for QCL devices. After the optimization of structure design and development of fabrication process, the InP-based QCL shows impressive properties with 600 mW emission power and over 100℃ operation temperature under c.w. mode. Following the previous work on Si-based QD laser, the quantum dot cascade laser (QDCL) is expected as a suitable solution for Si-based QCL devices. With the continuous improvement in structure design, the QDCL with multilayer QDs shows comparable performance, compared with conventional QCL devices. It is noted that the QDCL generates both TE and TM modes output, which is a breakthrough towards surface emitting QCL because the common QW-based QCL has only-TM emission in principle. Finally, the Si-based QCL is attempted with different structure design based on the pervious results

    Virtual Relational Knowledge Graphs for Recommendation

    Full text link
    Incorporating knowledge graph as side information has become a new trend in recommendation systems. Recent studies regard items as entities of a knowledge graph and leverage graph neural networks to assist item encoding, yet by considering each relation type individually. However, relation types are often too many and sometimes one relation type involves too few entities. We argue that it is not efficient nor effective to use every relation type for item encoding. In this paper, we propose a VRKG4Rec model (Virtual Relational Knowledge Graphs for Recommendation), which explicitly distinguish the influence of different relations for item representation learning. We first construct virtual relational graphs (VRKGs) by an unsupervised learning scheme. We also design a local weighted smoothing (LWS) mechanism for encoding nodes, which iteratively updates a node embedding only depending on the embedding of its own and its neighbors, but involve no additional training parameters. We also employ the LWS mechanism on a user-item bipartite graph for user representation learning, which utilizes encodings of items with relational knowledge to help training representations of users. Experiment results on two public datasets validate that our VRKG4Rec model outperforms the state-of-the-art methods

    Monolithic quantum-dot distributed feedback laser array on silicon

    Get PDF
    Electrically-pumped lasers directly grown on silicon are key devices interfacing silicon microelectronics and photonics. We report here, for the first time, an electrically-pumped, room-temperature, continuous-wave (CW) and single-mode distributed feedback (DFB) laser array fabricated in InAs/GaAs quantum-dot (QD) gain material epitaxially grown on silicon. CW threshold currents as low as 12 mA and single-mode side mode suppression ratios (SMSRs) as high as 50 dB have been achieved from individual devices in the array. The laser array, compatible with state-of-the-art coarse wavelength division multiplexing (CWDM) systems, has a well-aligned channel spacing of 20 0.2 nm and exhibits a record wavelength coverage range of 100 nm, the full span of the O-band. These results indicate that, for the first time, the performance of lasers epitaxially grown on silicon is elevated to a point approaching real-world CWDM applications, demonstrating the great potential of this technology

    All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates

    Get PDF
    A high-performance III–V quantum-dot (QD) laser monolithically grown on Si is one of the most promising candidates for commercially viable Si-based lasers. Great efforts have been made to overcome the challenges due to the heteroepitaxial growth, including threading dislocations and anti-phase boundaries, by growing a more than 2 ”m thick III–V buffer layer. However, this relatively thick III–V buffer layer causes the formation of thermal cracks in III–V epi-layers, and hence a low yield of Si-based optoelectronic devices. In this paper, we demonstrate a usage of thin Ge buffer layer to replace the initial part of GaAs buffer layer on Si to reduce the overall thickness of the structure, while maintaining a low density of defects in III–V layers and hence the performance of the InAs/GaAs QD laser. A very high operating temperature of 130 °C has been demonstrated for an InAs/GaAs QD laser by this approach

    Inversion boundary annihilation in GaAs Monolithically grown on on-axis Silicon (001)

    Get PDF
    Monolithic integration of III–V materials and devices on CMOS compatible on‐axis Si (001) substrates enables a route of low‐cost and high‐density Si‐based photonic integrated circuits. Inversion boundaries (IBs) are defects that arise from the interface between III–V materials and Si, which makes it almost impossible to produce high‐quality III–V devices on Si. In this paper, a novel technique to achieve IB‐free GaAs monolithically grown on on‐axis Si (001) substrates by realizing the alternating straight and meandering single atomic steps on Si surface has been demonstrated without the use of double Si atomic steps, which was previously believed to be the key for IB‐free III–V growth on Si. The periodic straight and meandering single atomic steps on Si surface are results of high‐temperature annealing of Si buffer layer. Furthermore, an electronically pumped quantum‐dot laser has been demonstrated on this IB‐free GaAs/Si platform with a maximum operating temperature of 120 °C. These results can be a major step towards monolithic integration of III–V materials and devices with the mature CMOS technology

    The role of different types of dopants in 1.3 ÎŒm InAs/GaAs quantum-dot lasers

    Get PDF
    The performance of O-band InAs/GaAs quantum-dot (QD) lasers grown by molecular beam epitaxy with three different doping strategies in the active region are investigated for a temperature range of 17 °C–97 °C. The lasing performance indicates that the n-type doping technique reduced the threshold current density of InAs QD lasers across the full temperature range and narrowed the near field lasing spot. However, for short-cavity lasers, the n-type doped laser switches from ground-state to excited-state lasing at a lower temperature compared to undoped and p-type modulation-doped lasers. In contrast, the p-type modulation-doped lasers have a reduced threshold current density for higher temperatures and for shorter lasers with cavity lengths of 1 mm and belo

    Inhalation of Hydrogen Attenuates Progression of Chronic Heart Failure via Suppression of Oxidative Stress and P53 Related to Apoptosis Pathway in Rats

    Get PDF
    Background: Continuous damage from oxidative stress and apoptosis are the important mechanisms that facilitate chronic heart failure (CHF). Molecular hydrogen (H2) has potentiality in the aspects of anti-oxidation. The objectives of this study were to investigate the possible mechanism of H2 inhalation in delaying the progress of CHF.Methods and Results: A total of 60 Sprague-Dawley (SD) rats were randomly divided into four groups: Sham, Sham treated with H2, CHF and CHF treated with H2. Rats from CHF and CHF treated with H2 groups were injected isoprenaline subcutaneously to establish the rat CHF model. One month later, the rat with CHF was identified by the echocardiography. After inhalation of H2, cardiac function was improved vs. CHF (p < 0.05), whereas oxidative stress damage and apoptosis were significantly attenuated (p < 0.05). In this study, the mild oxidative stress was induced in primary cardiomyocytes of rats, and H2 treatments significantly reduced oxidative stress damage and apoptosis in cardiomyocytes (p < 0.05 or p < 0.01). Finally, as a pivotal transcription factor in reactive oxygen species (ROS)-apoptosis signaling pathway, the expression and phosphorylation of p53 were significantly reduced by H2 treatment in this rat model and H9c2 cells (p < 0.05 or p < 0.01).Conclusion: As a safe antioxidant, molecular hydrogen mitigates the progression of CHF via inhibiting apoptosis modulated by p53. Therefore, from the translational point of view and speculation, H2 is equipped with potential therapeutic application as a novel antioxidant in protecting CHF in the future
    corecore