4,153 research outputs found
Charm-strange baryon strong decays in a chiral quark model
The strong decays of charm-strange baryons up to N=2 shell are studied in a
chiral quark model. The theoretical predictions for the well determined
charm-strange baryons, , and , are in
good agreement with the experimental data. This model is also extended to
analyze the strong decays of the other newly observed charm-strange baryons
, , , and .
Our predictions are given as follows. (i) might be the first
-wave excitation of with , favors the $|\Xi_c'\
^2P_\lambda 1/2^->|\Xi_c'\ ^4P_\lambda 1/2^->\Xi_c(2980)P|\Xi_c'\ ^2P_\rho 1/2^->|\Xi_c'\ ^2P_\rho 3/2^->\Xi_c(2980)\Lambda_c^+\bar{K}\pi|\Xi_c'\ ^2P_\rho
1/2^->m\simeq 2.97\Xi_c^*(2645)\pi|\Xi_c'\ ^2P_\rho 3/2^->\Xi_c(3080)|\Xi_c\ S_{\rho\rho} 1/2^+>\Xi_c\Xi_c(3055)D\Xi_cJ^P=3/2^+|\Xi_c\
^2D_{\lambda\lambda} 3/2^+>\Xi_c(3123)|\Xi_c'\ ^4D_{\lambda\lambda} 3/2^+>|\Xi_c'\ ^4D_{\lambda\lambda} 5/2^+>|\Xi_c\ ^2D_{\rho\rho} 5/2^+>\Sigma_b^{\pm}\Sigma_b^{*\pm}\Xi_b^*$, which are in good agreement with the recent observations as well.Comment: 15 pages, 9 figure
Predicting the epidemic threshold of the susceptible-infected-recovered model
Researchers have developed several theoretical methods for predicting
epidemic thresholds, including the mean-field like (MFL) method, the quenched
mean-field (QMF) method, and the dynamical message passing (DMP) method. When
these methods are applied to predict epidemic threshold they often produce
differing results and their relative levels of accuracy are still unknown. We
systematically analyze these two issues---relationships among differing results
and levels of accuracy---by studying the susceptible-infected-recovered (SIR)
model on uncorrelated configuration networks and a group of 56 real-world
networks. In uncorrelated configuration networks the MFL and DMP methods yield
identical predictions that are larger and more accurate than the prediction
generated by the QMF method. When compared to the 56 real-world networks, the
epidemic threshold obtained by the DMP method is closer to the actual epidemic
threshold because it incorporates full network topology information and some
dynamical correlations. We find that in some scenarios---such as networks with
positive degree-degree correlations, with an eigenvector localized on the high
-core nodes, or with a high level of clustering---the epidemic threshold
predicted by the MFL method, which uses the degree distribution as the only
input parameter, performs better than the other two methods. We also find that
the performances of the three predictions are irregular versus modularity
Pulping and Papermaking of Non-Wood Fibers
In general, the main raw materials of pulp and papermaking industry can be classified into three categories: wood, non-wood, and non-plant (mainly wastepaper), of which non-wood fiber material is an important fiber source in the areas where forest resources are scarce. Nowadays, in the total pulp consumption of the world, the proportions of wood pulp, wastepaper pulp, and non-wood pulp are 63, 34, and 3%, respectively. The effective use of non-wood fiber resources, especially grasses, cereal straws, corn stalks, bamboo, and bagasse, would play a major role in optimizing papermaking raw materials. On the other hand, there are non-wood fibers such as flax, hemp, jute, kenaf, cotton, sisal, and abaca with properties as good as or much better than softwood materials
- β¦