2,423 research outputs found

    Neutrino mu-tau reflection symmetry and its breaking in the minimal seesaw

    Full text link
    In this paper, we attempt to implement the neutrino μ\mu-τ\tau reflection symmetry (which predicts θ23=π/4\theta^{}_{23} = \pi/4 and δ=±π/2\delta = \pm \pi/2 as well as trivial Majorana phases) in the minimal seesaw (which enables us to fix the neutrino masses). For some direct (the preliminary experimental hints towards θ23≠π/4\theta^{}_{23} \neq \pi/4 and δ≠−π/2\delta \neq - \pi/2) and indirect (inclusion of the renormalization group equation effect and implementation of the leptogenesis mechanism) reasons, we particularly study the breakings of this symmetry and their phenomenological consequences.Comment: 20 pages, 7 figures, accepted for publication in JHE

    Probing the XYZXYZ states through radiative decays

    Full text link
    In this work, we have adopted the spin rearrangement scheme in the heavy quark limit and extensively investigated three classes of the radiative decays: M→(bbˉ)+γ\mathfrak{M}\to (b\bar{b})+\gamma, (bbˉ)→M+γ(b\bar{b})\to \mathfrak{M}+\gamma, M→M′+γ \mathfrak{M} \to \mathfrak{M}^\prime+\gamma, corresponding to the electromagnetic transitions between one molecular state and bottomonium, one bottomonium and molecular state, and two molecular states respectively. We also extend the same formalism to study the radiative decays of the molecular states with hidden charm. We have derived some model independent ratios when the initial or final states belong to the same spin flavor multiplet. Future experimental measurement of these ratios will test the molecular picture and explore the underlying structures of the XYZXYZ states.Comment: 21 pages, 10 tables Accepted by Phys.Rev.
    • …
    corecore