3,901 research outputs found

    Direct reconstruction of dynamical dark energy from observational Hubble parameter data

    Full text link
    Reconstructing the evolution history of the dark energy equation of state parameter w(z)w(z) directly from observational data is highly valuable in cosmology, since it contains substantial clues in understanding the nature of the accelerated expansion of the Universe. Many works have focused on reconstructing w(z)w(z) using Type Ia supernova data, however, only a few studies pay attention to Hubble parameter data. In the present work, we explore the merit of Hubble parameter data and make an attempt to reconstruct w(z)w(z) from them through the principle component analysis approach. We find that current Hubble parameter data perform well in reconstructing w(z)w(z); though, when compared to supernova data, the data are scant and their quality is worse. Both Ξ›\LambdaCDM and evolving w(z)w(z) models can be constrained within 10%10\% at redshifts z≲1.5z \lesssim 1.5 and even 5%5\% at redshifts 0.1 ≲\lesssim z ≲\lesssim 1 by using simulated H(z)H(z) data of observational quality.Comment: 25 pages, 11 figure

    Determination of the superconducting gap in near optimally doped Bi_2Sr_{2-x}La_xCuO_{6+\delta} (x ~ 0.4) from low-temperature specific heat

    Full text link
    Low-temperature specific heat of the monolayer high-Tc superconductor Bi_2Sr_{2-x}La_xCuO_{6+\delta} has been measured close to the optimal doping point (x ~ 0.4) in different magnetic fields. The identification of both a T^2 term in zero field and a \sqrt{H} dependence of the specific heat in fields is shown to follow the theoretical prediction for d-wave pairing, which enables us to extract the slope of the superconducting gap in the vicinity of the nodes (v_{\Delta}, which is proportional to the superconducting gap \Delta_0 at the antinodes according to the standard d_{x^2-y^2} gap function). The v_{\Delta} or \Delta_0 (~ 12 meV) determined from this bulk measurement shows close agreement with that obtained from spectroscopy or tunneling measurements, which confirms the simple d-wave form of the superconducting gap.Comment: 5 pages, 4 figures, 1 tabl

    Enhancement of polarization in a spin-orbit coupling quantum wire with a constriction

    Get PDF
    We investigate the enhancement of spin polarization in a quantum wire in the presence of a constriction and a spin-orbit coupling segment. It is shown that the spin-filtering effect is significantly heightened in comparison with the configuration without the constriction. It is understood in the studies that the constriction structure plays a critical role in enhancing the spin filtering by means of confining the incident electrons to occupy one channel only while the outgoing electrons occupy two channels. The enhancement of spin-filtering has also been analyzed within the perturbation theory. Because the spin polarization arises mainly from the scattering between the constriction and the segment with spin-orbit coupling, the sub-band mixing induced by spin-orbit interaction in the scattering process and the interferences result in higher spin-filtering effect.Comment: 8 pages, 7 figure

    Correlation function for the a0(980)a_0(980)

    Full text link
    We have conducted a model independent analysis of the K+Kˉ0K^+ \bar{K}^0 pair correlation function obtained from ultra high energy pppp collisions, with the aim of extracting the information encoded in it related to the KKˉK\bar{K} interaction and the coupled channel π+η\pi^+ \eta. With the present large errors at small relative K+Kˉ0K^+\bar{K}^0 momenta, we find that the information obtained about the scattering matrix suffers from large uncertainties. Even then, we are able to show that the data imply the existence of the a0a_0 resonance, a0(980)a_0(980), showing as a strong cusp close to the KKˉK\bar{K} threshold. We also mention that the measurement of the π+η\pi^+ \eta correlation function will be essential in order to constrain more the information on KKˉK\bar{K} dynamics that can be obtained from correlation functions.Comment: 7 pages, 9 figure

    A Modified Synchrotron Model for Knots in the M87 Jet

    Full text link
    For explaining the broadband spectral shape of knots in the M87 jet from radio through optical to X-ray, we propose a modified synchrotron model that considers the integrated effect of particle injection from different acceleration sources in the thin acceleration region. This results in two break frequencies at two sides of which the spectral index of knots in the M87 jet changes. We discuss the possible implications of these results for the physical properties in the M87 jet. The observed flux of the knots in the M87 jet from radio to X-ray can be satisfactorily explained by the model, and the predicted spectra from ultraviolet to X-ray could be further tested by future observations. The model implies that the knots D, E, F, A, B, and C1 are unlikely to be the candidate for the TeV emission recently detected in M87.Comment: 12 pages, 1 figure, 2 tables, Accepted for publication in ApJ Letter

    Pseudogap, Superconducting Energy Scale, and Fermi Arcs in Underdoped Cuprate Superconductors

    Full text link
    Through the measurements of magnetic field dependence of specific heat in La2βˆ’xSrxCuO4La_{2-x}Sr_xCuO_4 in zero temperature limit, we determined the nodal slope vΞ”v_\Delta of the quasiparticle gap. It is found that vΞ”v_\Delta has a very similar doping dependence of the pseudogap temperature Tβˆ—T^* or value Ξ”p\Delta_p. Meanwhile the virtual maximum gap at (Ο€,0\pi,0) derived from vΞ”v_\Delta is found to follow the simple relation Ξ”q=0.46kBTβˆ—\Delta_q=0.46k_BT^* upon changing the doping concentration. This strongly suggests a close relationship between the pseudogap and superconductivity. It is further found that the superconducting transition temperature is determined by both the residual density of states of the pseudogap phase and the nodal gap slope in the zero temperature limit, namely, Tcβ‰ˆΞ²vΔγn(0)T_c \approx \beta v_\Delta \gamma_n(0), where Ξ³n(0)\gamma_n(0) is the extracted zero temperature value of the normal state specific heat coefficient which is proportional to the size of the residual Fermi arc karck_{arc}. This manifests that the superconductivity may be formed by forming a new gap on the Fermi arcs near nodes below TcT_c. These observations mimic the key predictions of the SU(2) slave boson theory based on the general resonating-valence-bond (RVB) picture.Comment: 6 pages, 6 figures, to be published in Phys. Rev.

    Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots

    Full text link
    A bulk left-handed metamaterial with fishnet structure is investigated to show the optical loss compensation via surface plasmon amplification, with the assistance of a Gaussian gain in PbS quantum dots. The optical resonance enhancement around 200 THz is confirmed by the retrieval method. By exploring the dependence of propagation loss on the gain coefficient and metamaterial thickness, we verify numerically that the left-handed response can endure a large propagation thickness with ultralow and stable loss under a certain gain coefficient.Comment: 6 pages with 4 figure
    • …
    corecore