272 research outputs found

    STARS Enabled Integrated Sensing and Communications

    Full text link
    A simultaneously transmitting and reflecting intelligent surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the whole space is divided by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure, where dedicated sensors are installed at the STARS, is proposed to address the significant path loss and clutter interference for sensing. The Cramer-Rao bound (CRB) of the 2-dimension (2D) direction-of-arrivals (DOAs) estimation of the sensing target is derived, which is then minimized subject to the minimum communication requirement. A novel approach is proposed to transform the complicated CRB minimization problem into a trackable modified Fisher information matrix (FIM) optimization problem. Both independent and coupled phase-shift models of STARS are investigated: 1) For the independent phase-shift model, to address the coupling of ISAC waveform and STARS coefficient in the modified FIM, an efficient double-loop iterative algorithm based on the penalty dual decomposition (PDD) framework is conceived; 2) For the coupled phase-shift model, based on the PDD framework, a low complexity alternating optimization algorithm is proposed to tackle coupled phase-shift constants by alternatively optimizing amplitude and phase-shift coefficients in closed-form. Finally, the numerical results demonstrate that: 1) STARS significantly outperforms the conventional RIS in CRB under the communication constraints; 2) The coupled phase-shift model achieves comparable performance to the independent one for low communication requirements or sufficient STARS elements; 3) It is more efficient to increase the number of passive elements of STARS rather than the active elements of the sensor; 4) High sensing accuracy can be achieved by STARS using the practical 2D maximum likelihood estimator compared with the conventional RIS.Comment: 30 pages, 8 figure

    Beamfocusing Optimization for Near-Field Wideband Multi-User Communications

    Full text link
    A near-field wideband communication system is studied, wherein a base station (BS) employs an extremely large-scale antenna array (ELAA) to serve multiple users situated within its near-field region. To facilitate the near-field beamfocusing and mitigate the wideband beam split, true-time delayer (TTD)-based hybrid beamforming architectures are employed at the BS. Apart from the fully-connected TTD-based architecture, a new sub-connected TTD-based architecture is proposed for enhancing energy efficiency. Three wideband beamfocusing optimization approaches are proposed to maximize spectral efficiency for both architectures. 1) Fully-digital approximation (FDA) approach: In this approach, the TTD-based hybrid beamformers are optimized to approximate the optimal fully-digital beamformers using block coordinate descent. 2) Penalty-based FDA approach: In this approach, the penalty method is leveraged in the FDA approach to guarantee the convergence to a stationary point of the spectral maximization problem. 3) Heuristic two-stage (HTS) approach: In this approach, the closed-form TTD-based analog beamformers are first designed based on the outcomes of near-field beam training and the piecewise-near-field approximation. Subsequently, the low-dimensional digital beamformer is optimized using knowledge of the low-dimensional equivalent channels, resulting in reduced computational complexity and channel estimation complexity. Our numerical results unveil that 1) the proposed approaches effectively eliminate the near-field beam split effect, and 2) compared to the fully-connected architecture, the proposed sub-connected architecture exhibits higher energy efficiency and imposes fewer hardware limitations on TTDs and system bandwidth.Comment: 30 pages, 11 figure

    Near-Field Integrated Sensing and Communications

    Full text link
    A near-field integrated sensing and communications (ISAC) framework is proposed, which introduces an additional distance dimension for both sensing and communications compared to the conventional far-field system. In particular, the Cramer-Rao bound for the near-field joint distance and angle sensing is derived, which is minimized subject to the minimum communication rate requirement of each user. Both fully digital antennas and hybrid digital and analog antennas are investigated. For fully digital antennas, a globally optimal solution of the ISAC waveform is obtained via semidefinite relaxation. For hybrid antennas, a high-quality solution is obtained through two-stage optimization. Numerical results demonstrate the performance gain introduced by the additional distance dimension of the near-field ISAC over the far-field ISAC.Comment: 5 pages, 4 figure

    Active-Sensing-Based Beam Alignment for Near Field MIMO Communications

    Full text link
    An active-sensing-based learning algorithm is proposed to solve the near-field beam alignment problem with the aid of wavenumber-domain transform matrices (WTMs). Specifically, WTMs can transform the antenna-domain channel into a sparse representation in the wavenumber domain. The dimensions of WTMs can be further reduced by exploiting the dominance of line-of-sight (LoS) links. By employing these lower-dimensional WTMs as mapping functions, the active-sensing-based algorithm is executed in the wavenumber domain, resulting in an acceleration of convergence. Compared with the codebook-based beam alignment methods, the proposed method finds the optimal beam pair in a ping-pong fashion, thus avoiding high training overheads caused by beam sweeping. Finally, the numerical results validate the effectiveness of the proposed method

    Electrochemical Insertion/extraction of Lithium in Multiwall Carbon Nanotube/Sb and SnSbâ‚€.â‚… Nanocomposites

    Get PDF
    Multiwall carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition of acetylene and used as templates to prepare CNT-Sb and CNT-SnSb₀.₅ nanocomposites via the chemical reduction of SnCl₂ and SbCl₃ precursors. SEM and TEM imagings show that the Sb and SnSb₀.₅ particles were uniformly dispersed in the CNT web and on the outside surface of CNTs. These CNT-metal composites are active anode materials for lithium ion batteries, showing improved cyclability compared to unsupported Sb and SnSb particles; and higher reversible specific capacities than CNTs. The improvement in cyclability may be attributed to the nanoscale dimensions of the metal particles and CNT’s role as a buffer in containing the mechanical stress arising from the volume changes in electrochemical lithium insertion and extraction reactions.Singapore-MIT Alliance (SMA

    Coupled Phase-Shift STAR-RISs: A General Optimization Framework

    Full text link
    A general optimization framework is proposed for simultaneously transmitting and reflecting reconfigurable surfaces (STAR-RISs) with coupled phase shifts, which converges to the Karush-Kuhn-Tucker (KKT) optimal solution under some mild conditions. More particularly, the amplitude and phase-shift coefficients of STAR-RISs are optimized alternatively in closed form. To demonstrate the effectiveness of the proposed optimization framework, the throughput maximization problem is considered in a case study. It is rigorously proved that the KKT optimal solution is obtained. Numerical results confirm the effectiveness of the proposed optimization framework compared to baseline schemes.Comment: 15 pages, 3 figure

    Simultaneously Transmitting and Reflecting Surface (STARS) for Terahertz Communications

    Full text link
    A simultaneously transmitting and reflecting surface (STARS) aided terahertz (THz) communication system is proposed. A novel power consumption model is proposed that depends on the type and resolution of the STARS elements. The spectral efficiency (SE) and energy efficiency (EE) are maximized in both narrowband and wideband THz systems by jointly optimizing the hybrid beamforming at the base station (BS) and the passive beamforming at the STARS. 1) For narrowband systems, independent phase-shift STARSs are investigated first. The resulting complex joint optimization problem is decoupled into a series of subproblems using penalty dual decomposition. Low-complexity element-wise algorithms are proposed to optimize the analog beamforming at the BS and the passive beamforming at the STARS. The proposed algorithm is then extended to the case of coupled phase-shift STARS. 2) For wideband systems, the spatial wideband effect at the BS and STARS leads to significant performance degradation due to the beam split issue. To address this, true time delayers (TTDs) are introduced into the conventional hybrid beamforming structure for facilitating wideband beamforming. An iterative algorithm based on the quasi-Newton method is proposed to design the coefficients of the TTDs. Finally, our numerical results confirm the superiority of the STARS over the conventional reconfigurable intelligent surface (RIS). It is also revealed that i) there is only a slight performance loss in terms of SE and EE caused by coupled phase shifts of the STARS in both narrowband and wideband systems, and ii) the conventional hybrid beamforming achieves comparable SE performance and much higher EE performance compared with the full-digital beamforming in narrowband systems but not in wideband systems, where the TTD-based hybrid beamforming is required for mitigating wideband beam split.Comment: 17 pages, 12 figure

    TTD Configurations for Near-Field Beamforming: Parallel, Serial, or Hybrid?

    Full text link
    True-time delayers (TTDs) are popular components for hybrid beamforming architectures to combat the spatial-wideband effect in wideband near-field communications. A serial and a hybrid serial-parallel TTD configuration are investigated for hybrid beamforming architectures. Compared to the conventional parallel configuration, the serial configuration exhibits a cumulative time delay through multiple TTDs, which potentially alleviates the maximum delay requirements on the TTDs. However, independent control of individual TTDs becomes impossible in the serial configuration. In this context, a hybrid TTD configuration is proposed as a compromise solution. Furthermore, a power equalization approach is proposed to address the cumulative insertion loss of the serial and hybrid TTD configurations. Moreover, the wideband near-field beamforming design for different configurations is studied for maximizing the spectral efficiency in both single-user and multiple-user systems. 1) For single-user systems, a closed-form solution for the beamforming design is derived. The preferred user locations and the required maximum time delay of each TTD configuration are characterized. 2) For multi-user systems, a penalty-based iterative algorithm is developed to obtain a stationary point of the spectral efficiency maximization problem for each TTD configuration. In addition, a mixed-forward-and-backward (MFB) implementation is proposed to enhance the performance of the serial configuration. Our numerical results confirm the effectiveness of the proposed designs and unveil that i) compared to the conventional parallel configuration, both the serial and hybrid configurations can significantly reduce the maximum time delays required for the TTDs and ii) the hybrid configuration excels in single-user systems, while the serial configuration is preferred in multi-user systems.Comment: 13 pages, 8 figure

    Near-Field Communications: What Will Be Different?

    Full text link
    The design dilemma of "What will be different between near-field communications (NFC) and far-field communications (FFC)?" is addressed from four perspectives. 1) From the channel modelling perspective, the differences between near-field and far-field channel models are discussed. A novel Green's function-based channel model is proposed for continuous-aperture antennas, which is contrasted to conventional channel models tailored for spatially-discrete antennas. 2) From the performance analysis perspective, analytical results for characterizing the degrees of freedom and the power scaling laws in the near-field region are provided for both spatially-discrete and continuous-aperture antennas. 3) From the beamforming perspective, far-field beamforming is analogous to a "flashlight" that enables beamsteering, while near-field beamforming can be likened to a "spotlight" that facilitates beamfocusing. As a further advance, a couple of new beamforming structures are proposed for exploiting the new characteristics of NFC. 4) From the application perspective, new designs are discussed in the context of promising next-generation technologies in NFC, where our preliminary numerical results demonstrate that distance-aware target sensing and enhanced physical layer security can be realized in NFC. Finally, several future research directions of NFC are discussed.Comment: 9 pages, 5 figures, submit to possible IEEE journa
    • …
    corecore