14,042 research outputs found
Four-fermion interactions and the chiral symmetry breaking in an external magnetic field
We investigate the chiral symmetry and its spontaneous breaking at finite
temperature and in an external magnetic field with four-fermion interactions of
different channels. Quantum and thermal fluctuations are included within the
functional renormalization group approach, and properties of the set of flow
equations for different couplings, such as its fixed points, are discussed. It
is found that external parameters, e.g. the temperature and the external
magnetic field and so on, do not change the structure of the renormalization
group flows for the couplings. The flow strength is found to be significantly
dependent on the route and direction in the plane of couplings of different
channels. Therefore, the critical temperature for the chiral phase transition
shows a pronounced dependence on the direction as well. Given fixed initial
ultraviolet couplings, the critical temperature increases with the increasing
magnetic field, viz., the magnetic catalysis is observed with initial couplings
fixed.Comment: 8 pages, 4 figure
Mesonic excitations and pi--pi scattering lengths at finite temperature in the two-flavor Polyakov--Nambu--Jona-Lasinio model
The mesonic excitations and s-wave pi--pi scattering lengths at finite
temperature are studied in the two-flavor Polyakov--Nambu--Jona-Lasinio (PNJL)
model. The masses of pi-meson and sigma-meson, pion-decay constant, the
pion-quark coupling strength, and the scattering lengths and at
finite temperature are calculated in the PNJL model with two forms of
Polyakov-loop effective potential. The obtained results are almost independent
of the choice of the effective potentials. The calculated results in the PNJL
model are also compared with those in the conventional Nambu--Jona-Lasinio
model and indicate that the effect of color confinement screens the effect of
temperature below the critical one in the PNJL model. Furthermore, the
Goldberger-Treiman relation and the Gell-Mann--Oakes--Renner relation are
extended to the case at finite temperature in the PNJL model.Comment: 25 pages, 8 figure
Cryptanalysis and improvement of the quantum private comparison protocol based on Bell entangled states
Recently, Liu et al. [Commun. Theor. Phys. 57, 583, 2012] proposed a quantum
private comparison protocol based on entanglement swapping of Bell states,
which aims to securely compare the equality of two participants' information
with the help of a semi-honest third party (TP). However, this study points out
there is a fatal loophole in this protocol, i.e., TP can obtain all of the two
participants secret inputs without being detected through making a specific
Bell-basis measurement. To fix the problem, a simple solution, which uses
one-time eavesdropper checking with decoy photons instead of twice eavesdropper
checking with Bell states, is demonstrated. Compared with the original
protocol, it also reduces the Bell states consumption and simplifies the steps
in the protocol.Comment: 9 pages, 1 figur
Improved Deterministic N-To-One Joint Remote Preparation of an Arbitrary Qubit via EPR Pairs
Recently, Bich et al. (Int. J. Theor. Phys. 51: 2272, 2012) proposed two
deterministic joint remote state preparation (JRSP) protocols of an arbitrary
single-qubit state: one is for two preparers to remotely prepare for a receiver
by using two Einstein-Podolsky-Rosen (ERP) pairs; the other is its generalized
form in the case of arbitrary N>2 preparers via N ERP pairs. In this paper,
Through reviewing and analyzing Bich et al.'s second protocols with N>2
preparers, we find that the success probability P_{suc}=1/4 < 1. In order to
solve the problem, we firstly constructed two sets of projective measurement
bases: the real-coefficient basis and the complex-coefficient one, and further
proposed an improved deterministic N-to-one JRSP protocol for an arbitrary
single-qubit state with unit success probability (i.e, P_{suc}=1). Morever, our
protocol is also flexible and convenient, and it can be used in a practical
network.Comment: 13 pages, 2 figures, two table
Search for charmonium and XYZ states in at BESIII
Within the framework of nonrelativistic quantum chromodynamics, we study the
production of charmonium states in at BESIII
with (n=1, 2, 3, and 4), (n=1, 2, and 3), and
(n=1 and 2). The radiative and relativistic corrections are
calculated to next-to-leading order for and wave states. We then argue
that the search for states such as , , ,
and in at BESIII may help clarify the nature
of these states. BESIII can search states through two body process
, where decay to , , or
. This result may be useful in identifying the nature of
states. For completeness, the production of charmonium in at B factories is also discussed.Comment: Comments and suggestions are welcome. References are update
- β¦