1 research outputs found

    Animating turbulent water by vortex shedding in PIC/FLIP

    No full text
    In this paper, we present a hybrid method, which integrates PIC/FLIP and vortex particle methods into a unified framework, to efficiently simulate vortex shedding that happens when fluids flow around internal obstacles. To improve efficiency and reduce the numerical dissipations, we first solve the governing equations on a coarse grid using PIC/FLIP, and then interpolate the intermediate results to a finer grid to obtain the base flow. When the regular particles in PIC/FLIP enter the boundary layer, if the specified conditions are satisfied to cause vortex shedding, they are selected as vortex particles by assigning additional vorticity related attributes. The vortex particle dynamics are controlled by the vorticity form of NS equations, and several efficient methods are proposed to solve them on the finer grid. Finally, the obtained turbulence flow is added to the base flow. As a result, we are able to simulate turbulent water with rich wake details around the internal obstacles. © 2013 Science China Press and Springer-Verlag Berlin Heidelberg.In this paper, we present a hybrid method, which integrates PIC/FLIP and vortex particle methods into a unified framework, to efficiently simulate vortex shedding that happens when fluids flow around internal obstacles. To improve efficiency and reduce the numerical dissipations, we first solve the governing equations on a coarse grid using PIC/FLIP, and then interpolate the intermediate results to a finer grid to obtain the base flow. When the regular particles in PIC/FLIP enter the boundary layer, if the specified conditions are satisfied to cause vortex shedding, they are selected as vortex particles by assigning additional vorticity related attributes. The vortex particle dynamics are controlled by the vorticity form of NS equations, and several efficient methods are proposed to solve them on the finer grid. Finally, the obtained turbulence flow is added to the base flow. As a result, we are able to simulate turbulent water with rich wake details around the internal obstacles. © 2013 Science China Press and Springer-Verlag Berlin Heidelberg
    corecore