78 research outputs found

    Making the Invisible Visible: Action Recognition Through Walls and Occlusions

    Full text link
    Understanding people's actions and interactions typically depends on seeing them. Automating the process of action recognition from visual data has been the topic of much research in the computer vision community. But what if it is too dark, or if the person is occluded or behind a wall? In this paper, we introduce a neural network model that can detect human actions through walls and occlusions, and in poor lighting conditions. Our model takes radio frequency (RF) signals as input, generates 3D human skeletons as an intermediate representation, and recognizes actions and interactions of multiple people over time. By translating the input to an intermediate skeleton-based representation, our model can learn from both vision-based and RF-based datasets, and allow the two tasks to help each other. We show that our model achieves comparable accuracy to vision-based action recognition systems in visible scenarios, yet continues to work accurately when people are not visible, hence addressing scenarios that are beyond the limit of today's vision-based action recognition.Comment: ICCV 2019. The first two authors contributed equally to this pape

    Sample-Specific Debiasing for Better Image-Text Models

    Full text link
    Self-supervised representation learning on image-text data facilitates crucial medical applications, such as image classification, visual grounding, and cross-modal retrieval. One common approach involves contrasting semantically similar (positive) and dissimilar (negative) pairs of data points. Drawing negative samples uniformly from the training data set introduces false negatives, i.e., samples that are treated as dissimilar but belong to the same class. In healthcare data, the underlying class distribution is nonuniform, implying that false negatives occur at a highly variable rate. To improve the quality of learned representations, we develop a novel approach that corrects for false negatives. Our method can be viewed as a variant of debiased constrastive learning that uses estimated sample-specific class probabilities. We provide theoretical analysis of the objective function and demonstrate the proposed approach on both image and paired image-text data sets. Our experiments demonstrate empirical advantages of sample-specific debiasing

    Dynamic Neural Fields for Learning Atlases of 4D Fetal MRI Time-series

    Full text link
    We present a method for fast biomedical image atlas construction using neural fields. Atlases are key to biomedical image analysis tasks, yet conventional and deep network estimation methods remain time-intensive. In this preliminary work, we frame subject-specific atlas building as learning a neural field of deformable spatiotemporal observations. We apply our method to learning subject-specific atlases and motion stabilization of dynamic BOLD MRI time-series of fetuses in utero. Our method yields high-quality atlases of fetal BOLD time-series with \sim5-7×\times faster convergence compared to existing work. While our method slightly underperforms well-tuned baselines in terms of anatomical overlap, it estimates templates significantly faster, thus enabling rapid processing and stabilization of large databases of 4D dynamic MRI acquisitions. Code is available at https://github.com/Kidrauh/neural-atlasingComment: 6 pages, 2 figures. Accepted by Medical Imaging Meets NeurIPS 202

    Evidence for an oncogenic role of HOXC6 in human non-small cell lung cancer

    Get PDF
    Background Identification of specific biomarkers is important for the diagnosis and treatment of non-small cell lung cancer (NSCLC). HOXC6 is a homeodomain-containing transcription factor that is highly expressed in several human cancers; however, its role in NSCLC remains unknown. Methods The expression and protein levels of HOXC6 were assessed in NSCLC tissue samples by Quantitative real-time PCR (qRT-PCR) and immunohistochemistry, respectively. HOXC6 was transfected into the NSCLC cell lines A549 and PC9, and used to investigate its effect on proliferation, migration, and invasion using CFSE, wound healing, and Matrigel invasion assays. Next-generation sequencing was also used to identify downstream targets of HOXC6 and to gain insights into the molecular mechanisms underlying its biological function. Results HOXC6 expression was significantly increased in 66.6% (20/30) of NSCLC tumor samples in comparison to normal controls. HOXC6 promoted proliferation, migration, and invasion of NSCLC cells in vitro. RNA-seq analysis demonstrated the upregulation of 310 and 112 genes in A549-HOXC6 and PC9-HOXC6 cells, respectively, and the downregulation of 665 and 385 genes in A549-HOXC6 and PC9-HOXC6 cells, respectively. HOXC6 was also found to regulate the expression of genes such as CEACAM6, SPARC, WNT6, CST1, MMP2, and KRT13, which have documented pro-tumorigenic functions. Discussion HOXC6 is highly expressed in NSCLC, and it may enhance lung cancer progression by regulating the expression of pro-tumorigenic genes involved in proliferation, migration, and invasion. Our study highlighted the oncogenic potential of HOXC6, and suggests that it may be a novel biomarker for the diagnosis and treatment of NSCLC
    corecore